- cross-posted to:
- technology@lemmy.world
- cross-posted to:
- technology@lemmy.world
Tesla speculated electricity from thin air was possible – now the question is whether it will be possible to harness it on the scale needed to power our homes
According to the Lyubchyks, one of these devices can generate a relatively modest 1.5 volts and 10 milliamps. However, 20,000 of them stacked into a washing machine-sized cube, they say, could generate 10 kilowatt hours of energy a day – roughly the consumption of an average UK household. Even more impressive: they plan to have a prototype ready for demonstration in 2024.
That’d be cool if it worked, even if it does it will be cost prohibitive for quite some time.
Put so many together in a small space and you’ll incur in more issues. This might be huge in the future, but for now just a cool concept.
10mA @1.5 volts is plenty for all sorts of things! Just two of those things and you’ve got 10mA @3V which is more than enough to power a Bluetooth Low Energy microcontroller and some occasionally-lit LEDs, displays, sensors, buttons, etc.
Simple, real-world example: Nest sells these remote temperature sensors that you can place around your home to use any given location (e.g. your living room) as the place where you want the thermostat temperature setting to apply. They take a 3V CR123A battery that needs to be replaced about every 3 years.
A CR123A battery only holds about ~2.4 watt-hours of power. That’s 2500 milliwatt-hours or 250 hours of 10mW @3V. That means the Nest temperature sensor uses about 0.0095mA of current (@3V). In reality it uses a lot more than that; it just stays in a sleep state nearly all of the time and only powers up every few minutes when it needs to take a temperature reading and send it to the thermostat.
TL;DR: Just one or two of these energy harvesting devices could power a Nest temperature sensor forever (assuming they don’t wear out or lose much efficiency over time).
There’s zillions of low-power devices that today use batteries (that often corrode and need to replaced every few years even if they might not run out of power) that could be powered by these humidity power harvesting devices. It could change low-power engineering forever!
I hope one day we will be able to charge devices without plugging them in - even if the amount of charge is small, it might be able to trickle charge all the time.
check out energous.com stock ticker WATT
It sounds interesting, but I don’t quite get where the energy comes from - it sounds like they are harvesting the kinetic energy from the water molecules? So what is the net effect when scaled up? Does the device get very cold? an ELI5 would be appreciated
Singaporean: Take my money!
Waiting for that Thunderf00t video on this.
I just want us to dehumidify the whole South
I don’t know how humid this air has to be, but summer in Georgia hits 100% humidity fairly regularly so it’ll definitely work
It doesn’t say how humid the air needs to be. Will it still work if humidity is low?
There’s always some humidity, so I guess in the end it depends entirely on how efficient they can make this technology. It’s probably a bit too early to say.
That said, if you live in a tent in the Sahara you probably shouldn’t postpone investing in solar panels over this.
Sorry to hear the scientist commited sudoku tomorrow with 2 gunshots to the back of his head. /s
I’m going to assume you got auto corrected from seppuku to sudoku. Because that is hilarious.
I imagine this having practical usage in maybe keeping things like sensors working in a plumbing or caving kinda context considering the low power currently created. Awesome!
Feel like there is still room for error, so this needs to be investigated further. Would be a great substitution.
So if this gets scaled up for global use won’t it cause issues by drying out the air?
It doesn’t look like it dehumidifies the air, just takes advantage of the humidity’s electrical charge.
Yes, just like using wind turbines slows down the wind
deleted by creator