• MystikIncarnate@lemmy.ca
    link
    fedilink
    English
    arrow-up
    16
    ·
    1 year ago

    The study isn’t wrong, but it’s also not right, IMO.

    This doesn’t seem to mention the cost of the energy, just how “efficient” it is… which, honestly, “efficient” can imply several things, and they don’t seem to clarify what (at least from my first pass of this doc).

    The issue is that even if you’re getting 3-4 times as much heating/cooling as you could with something else, per jule of energy potential that is put into the system (in whatever form that is), if your energy cost for that source of power is high, it’s going to lose the financial argument every time.

    Sure, a natural gas furnace will consume “more fuel” and produce less effective heat than a heat pump, but if you’re paying 10x the cost for electricity, then you’re still going to end up spending more per degree of heating than with the cheaper fuel.

    Where I am, electricity is pretty cheap, but natural gas is tremendously cheaper per jule… so we can actually pay less by using the “inefficient” fuel for our home.

    I don’t think the numbers are dramatically different at the end of the day, but this study seems to completely ignore the core issue that most people will be concerned with… which is: “will this save me money?” Which is arguably the more important metric.

    • abhibeckert@beehaw.org
      link
      fedilink
      arrow-up
      12
      ·
      edit-2
      1 year ago

      honestly, “efficient” can imply several things, and they don’t seem to clarify what (at least from my first pass of this doc).

      How would you like to define it?

      How about this for an analogy - which of these two is more efficient:

      1. Plant some wheat in your back yard, buy fertilised eggs to hatch into chickens, plant tomatoes and basil, plant an olive to grow a tree, and eventually, years down the track, you can make yourself a bowl of pasta.

      2. Notice your next door neighbour already cooked some pasta and made more than they can eat. Ask politely and they’ll just give you a serving.

      Obviously - the second option is more efficient, and that’s effectively what a heat pump does. They don’t heat up your home, they just take a bit of heat from the air outside and move (pump) it into your home. It’s far far more efficient than creating new heat from scratch with a gas system.

      Exactly how much more efficient will depend on the outdoor and indoor air temperature, and on the brand/model of heat pump you buy, and other factors (such as the length of the pipe between the outdoor unit and the indoor unit). You really should ask for specific advice on your home - but in general, a heat pump is extremely efficient.

      Where I am, electricity is pretty cheap, but natural gas is tremendously cheaper per jule… so we can actually pay less by using the “inefficient” fuel for our home.

      Have you actually looked into it, or are you just making assumptions?

      I can tell you that my heat pump, in my house (yours will be different), in my climate, adds about $5 per week to my electricity bill. Is your gas bill less than $5 per week?

      Or at least - that’s how much it cost before I had solar panels. Now that I have solar… it uses about 20% of the power typically produced by the solar panels on my roof leaving plenty of excess power that we sell to the grid for about the same amount of money as what we spend buying power overnight. Since we installed solar our entire electricity bill is about $0 (and we use power for a bunch of other stuff, including to cook breakfast and dinner when the sun typically isn’t shining*). We don’t have a large solar system either - in fact, installing solar cost less than installing heat pumps.

      (* our solar system comes with instruments and software to measure our consumption - and I can tell you that heating up a family meal with an electric cooktop uses more electricity than heating an entire house with heat pump… because the cooktop is creating heat, and the heat pump is simply moving heat)

    • UnhealthyPersona@beehaw.org
      link
      fedilink
      arrow-up
      9
      ·
      1 year ago

      What’s also interesting is that you have to factor in the costs and CO2 emissions of the fuel source and it’s delivery method. A new building code for a county in my area was adopted which requires calculations for energy efficient HVAC systems and also CO2 emissions with those systems. Surprisingly, natural gas has less CO2 emissions associated with it, while electricity is 2.86 times as much. This is because grid electricity is mostly produced by fossil fuels, then needs to be delivered to the site but there are many losses along the way. So even if the all electric equipment is twice as efficient as the equivalent natural gas equipment, it still contributes more CO2 production. This is part of the issue with phasing out natural gas and moving to all electric in its current state. But with that is the push (and requirements) to produce energy on site and shift towards net zero energy for commercial sites, which is definitely better than using grid power from an emissions standpoint.

    • Barry Zuckerkorn@beehaw.org
      link
      fedilink
      arrow-up
      7
      ·
      1 year ago

      Where I am, electricity is pretty cheap, but natural gas is tremendously cheaper per jule… so we can actually pay less by using the “inefficient” fuel for our home.

      Most of the push towards rapid adoption of heat pumps is happening in Europe, where geopolitical developments (to put it mildly) caused gas prices to spike last winter. The nature of the natural gas logistics means that different continents can have wildly different prices (unlike petroleum, where you can always throw it on a ship and send it from where it’s cheap to where it’s expensive), so a lot of European countries are seeing these debates play out against the backdrop of their own energy markets. Germany passed a law this year that would phase out new gas furnace installations, so that’s why a lot of the debate is happening with a focus on German markets.

      Whether (or how quickly) a transition to heat pumps pays for itself in euros will depend a lot on what happens in the future to gas and electricity prices.