Scientists develop mega-thin solar cells that could be shockingly easy to produce: ‘As rapid as printing a newspaper’::These cells could be laminated onto various kinds of surfaces, such as the sails of a boat to provide power while at sea.
Scientists develop mega-thin solar cells that could be shockingly easy to produce: ‘As rapid as printing a newspaper’::These cells could be laminated onto various kinds of surfaces, such as the sails of a boat to provide power while at sea.
This has its own applications but I can’t say I’ve ever heard anyone complain about thickness of solar panels. Efficiency, power generated, etc. Sure.
I don’t think it’s so much about thickness, but being super thin presumably means it requires less of a manufacturing process and also less raw materials. Could bring costs down on panels and make them more financially viable for projects.
Indeed, 44 lbs for an 8kw installation is very light.
Use cases increase if they are thin. Instead of limited to rooftops. For example, take a look at what Aptera is doing.
Burning investor money on a DOA meme product just like Lightyear One did?
Ooof
Clearly you’ve never
owned an air fryerwanted a solar powered car. Or imagine shipping containers covered in these powering the trucks that haul them! Or trains! Even boats. Basically any kind of self powered transit, especially ones with greater surface area.Second edit: Another idea! Clingfilm solar panels for windows, or blinds and curtains that can power the lights!
Or wind turbines skinned in thin, light, flexible solar panels. You’d double dip on energy per square meter. You could have a solar farm on a stick that also makes wind energy.
Also known as a “flag”
Ha! That could be it too, but I had meant more like a wrap around the pole.
If you dream of covering a vehicle with panels and have it driven by that power, I have to burst your bubble. That’s not even nearly enough surface to generate enough power. Perhaps assist in trickle charging battery, sure. But we already have flexible panels, even self-adhesive ones. And again, their biggest downside is not their thickness but efficiency. There will never be a self-propelled vehicle. Just a nature of things.
As for window blinds, etc. There is already glass that lets enough light through and can generate electricity. Those are even worse when it comes to efficiency due to non-ideal angle, light passing through, etc.
“We already have technology that doesn’t do those things well enough, so this new technology that won’t see advancement ever has no chance of addressing these issues either.”
Trickle charge is awesome. Trickle charge the semi during your 8 hour driving shift and then another 8 hours while the trucker is asleep. If that nets half a charge every other day, that’s a charge and a half a week. It’s not self powered like a perpetual motion device, those aren’t real. But regenerative braking is a worthwhile addition to an electric truck. Why wouldn’t solar paper or whatever we want to call it also be part of the solution?
More like, it would take 8 days of constant sun to have an hour of driving.
Currently. Technology gets better
Those all sound like efficiency issues still. Covering any form of transportation with solar panels is primarily pointless because of how little power that would generate. Even if you covered every available inch with the most efficient panels invented, it would take over two weeks of sitting in full, direct sunlight to charge a solar-powered car, which you would drain in four hours of driving. As these panels are half as efficient as traditional panels, you could drive maybe
atwo minutes per hour you sit in full sun.Gotta be useful during the zombie apocalypse though. No more raiding gas stations and broken down vehicles.
Where are you getting that two weeks number?
A car has up to 55 sq. ft. available to panel. A good solar panel gets maybe 20 W/sq. ft. efficiency. An electric car has around an 80 kWh battery. A day has roughly the equivalent of 5 hours of full sunlight.
Then you just multiply/divide everything together, and you get 14½ days.
If it takes 14 days to charge the battery, you just need to use it less then a 14th of its range per day and this all becomes very feasible, no? First link on google tells me high efficiency EVs output 6.4km per kwh. That’s 30 km a day at 80kwh, nothing to scoff at in my opinion, although its probably less.
I also think it could become popular to lengthen the in between charging times with higher capacity batteries.
+1 for the use of wolfram
Fair enough. That definitely is true for a car. I would wonder whether the power/surface area/weight/energy consumption all scale linearly or if a vehicle like a semi with more surface area could take advantage of increased number solar panels, or would the amount of work needed to move the larger truck scale equally to the power gained?
Thank you for your proving reasoning for your opinions and sources. You’re groovy. Don’t feel like you have to again for this random thought of mine unless it’s enjoyable for you as part of our conversation.
First, the thickness factor plays into flexibility. Just imagine surfaces of every shape being covered in solar cells. Flexible panels could also be less prone to breakage.
Second, with “as rapid as printing a newspaper”, this might be a major cost-reduction thing, even on top of the process needing less high-pure Si material.
This might make solar power generation more attractive even if the efficiency would be lower than other methods, because this would drive the ratio $/kw down.
Kind of like these? Flexible solar panels are not a problem. And no, being newspaper thin will never be stronger than mounted on rigid surface. If it bends it has a definite limit in number of times you can bend it.
As for “printing a newspaper” and rapid production, when I see it I’ll believe it. At the moment it’s nothing more than speculation as they themselves have not made it yet. Every manufacturing process starts slow and then speeds up as process is optimized. The problem is whether there is a financial incentive to start producing in the first place.
By “flexible” I did not imply “use it as a hinge”. It was more like: “you can install it on a non-flat surface”, e.g. by gluing it down. Now that surface would provide the needed overall stability. Imagine having you cars roof and engine hood being completely covered in solar cells - or basically be a solar cell. No, you would not be able to drive it as an EV with the amounts of power provided, but it could trickle charge a battery, or power a fan in hot weather so the interior will not be boiling when you return to your vehicle after a day at work.
We already have the panel type which is glued on. But I guess it remains to be seen whether there’s a financial incentive to mass produce this.
Indeed. Price is the key issue.
Bulky, heavy, stiff, …
Which would all be a valid concern if you had to carry them all the time or bend them. There are flexible solar panels which you can glue on roof of your boat or car though.