Elon Musk filed a lawsuit in San Francisco’s Superior Court accusing OpenAI and its CEO, Sam Altman, of betraying the startup’s initial commitment to openness, the betterment of society, and lack of profit as a motive. Among other things, Musk’s 35-page complaint argues that OpenAI has violated its original deal to share its GPT large language models with Microsoft, which stated that the software giant would lose access to new LLMs once OpenAI had achieved AGI. According to the complaint, OpenAI reached that epoch-shifting moment a year ago with GPT-4, its most powerful model to date.
Musk—who cofounded OpenAI but left in 2018—is at least as entitled as anyone to come up with his own definition of AGI. His complaint describes it as “a general purpose artificial intelligence system—a machine having intelligence for a wide variety of tasks like a human.” That does sound like GPT-4 as I, a mere layperson, experience it in ChatGPT Plus.
But Musk’s declaration that the AGI era is already upon us is hardly the consensus among AI scientists. Even those who think it’s not far off predict arrival dates that are least a few years away. And GPT-4 falls well short of meeting OpenAI’s own explanation of the term: “A highly autonomous system that outperforms humans at most economically valuable work.”
Consider the evidence:
GPT-4 isn’t remotely autonomous; indeed, it does its best work when humans provide plenty of hand-holding in the form of detailed prompts. The world is still in the process of figuring out what tasks GPT-4 can do, and we frequently overrate its competence. That’s not even getting into the fact that OpenAI’s reference to “most economically valuable work” suggests that true AGI may involve not just software but also sophisticated robotics that don’t exist yet. To guess when OpenAI—or a rival such as Google, Anthropic, Meta, Mistral, or Perplexity—might reach AGI, as OpenAI defines it, is to expect that it’ll be an obvious moment in time. But OpenAI’s definition, like all the others, is squishy and difficult to put to a conclusive test. To riff on Supreme Court Justice Potter Stewart’s famous comment about pornography, maybe we’ll know it when we see it. At the moment, however, I’m convinced that obsessing over AGI’s existence or nonexistence is counterproductive.
The whole notion of AGI is predicated on the assumption that AI started out dumber than a human but could someday match or exceed our level of thinking. Already, though, generative AI is different than human intelligence—far closer to omniscient than any individual flesh-and-blood thinker, yet also preternaturally gullible and prone to blurring fact and fiction in ways that don’t map to common human frailties. That’s because it’s a predictive engine, trained to string together words without truly understanding them. If its present trajectory of simulated brilliance mixed with boneheadedness continues, it might wander off in a direction far afield from most definitions of AGI.
Even if the world lands on a new, more inclusive definition of AGI, it may be hard to prove whether a particular LLM has attained it. Musk’s lawsuit cites proof points of GPT-4’s reasoning power, such as its scoring in the 90th percentile on the Uniform Bar Exam for lawyers and the 99th percentile on the GRE Verbal Assessment. That it can do so is astounding. But acing tests is not synonymous with performing useful work. And even if it were, who gets to decide how many tests an LLM must pass before it’s achieved AGI rather than just bobbled somewhere in its vicinity?
For decades, the Turing Test—which a computer would pass by fooling a human into thinking that it, too, was human—was computer science’s beloved thought experiment for determining when AI had gotten real. Strangely enough, it’s useless as a tool for assessing today’s LLM-based chatbots. But not because they know too little to fake humanity convincingly, or can’t express it glibly enough—but because they betray their artificiality by being so good at churning out endless wordage on more topics than any human knows. AGI could end up in a similar predicament: a benchmark, devised by humans, that’s rendered obsolete by the technology it was meant to measure.
DID YOU HEAR THE ONE ABOUT THE “MAC CAR?” Last week, Apple’s long, expensive quest to build an autonomous EV entered its rearview-mirror phase—a sad fate my colleague Jared Newman blamed on the company’s sometimes counterproductive pursuit of perfection. Wondering what an Apple car would be like has been an obsession for techies since 2012, when news broke that Steve Jobs had toyed with getting into the automobile business even before there was an iPhone. Or maybe it started in 2008, when reports of a meeting between Steve Jobs and Volkswagen’s CEO led to wild speculation about an “iCar.”
Or how about 1998? According to Snopes, that’s when a joke involving cars designed by software companies began spreading like crabgrass across the internet, eventually evolving into an urban legend involving a Bill Gates keynote and a General Motors press release. Along with a Microsoft car that crashed twice a day and occasionally needed its engine replaced for no apparent reason, it mentioned a “Mac car” that “was powered by the sun, was reliable, five times as fast, twice as easy to drive—but would only run on 5% of the roads.”
if everybody says ‘the earth is a square’, these A.I will say ‘the earth is a square’ : there is no intelligence, it’s just a summary of what everybody says. if one day, a machine is able to say : you’re wrong, the earth is a sphere, and here is the reason…, then i will say ’ ok, you’re a real A.I ’
In a way, human intelligence is like that.
People used to think earth used to be the centre of the universe, because everybody said so. Would you say that only Nicolaus Copernicus was intelligent?
Other people had the capability to do what Copernicus did, but lacked desire/resources. A LLM will never have the capability for a novel idea.
They also would lack the “desire” and resources to do so.
They can’t act of their own volition without input, and they can’t access systems they were not designed to interface with and data that they were not trained on or given through the input.
I think it’s preferable that way, given the immense overhyping of this technology that is ocurring, and the existing cases of misuse.
An LLM may not. Will an AI?
If by AI, you mean the things people are making today and calling AI, no, they’re all basically powerful regression algorithms. They can be strong tools for people to use to solve complex problems. Anything a program does will be based on what it was programmed to do, at best it will find novel things based on being programmed to look for novel things randomly and people will test and confirm those guesses. They already kind of do this for some medical purposes. Is trying an uncountably large number of randomized guesses and giving a probability for success based on historical data intelligent?
Could a true AI exist like we see in SciFi, maybe?
human behavior is like that : we repeat what we heard, so A.I is just copying the human behavior, it’s not a proof of ’ intelligence ’ for me. ( I’m in no way intelligent ). But may be these A.I will be able to have a ‘relationship intelligence’ : Know how to manipulate human behavior is probably a kind of intelligence.
That’s a problem with the technological comparison model of intelligence. We have dealt with it since the inception of calculators. Humans are not machines. Machines can emulate behaviors, but they are not and will never be like human entities. We have used them as metaphors for everything from mathematical thinking to memory and visual processing. But the truth of the matter is that, both neurological and phenomenologically speaking, we don’t think like machines, and we are not anything like them.
Humans don’t just repeat what we hear, just like artist don’t just mix and mash all the art they have seen in their lives the way stable diffusion and other image generators do. There’s a lot of things underlying the superficial process of stringing words together or composing a drawing or painting, happening in our brains that machines cannot do.
Which AI it would be : emotional, logical, spatial, etc ? Because there is not one intelligence in the humand mind, but several.
What will be very amazing, will be an AM, an artificial mind.
It seems to me that the long experiment playing out may include simply waiting to see if there is a critical mass threshold to be reached (ie, of this LLM “simply repeating what everyone agrees on” idea) that allows the process to evolve into something closer to “thinking.”
I’m sure I don’t know enough about LLMs, but as others others here are pointing out, this seeming regurgitation of the already-known does seem to provide the foundation or potential for generating hypotheses and/or “new” ideas.
There isn’t. No amount of computational accumulation can result spontaneously into a mind. There’s not enough flexibility and malleability in the underlying processes (algorithms) that run LLMs. The process never changes therefore it cannot evolve into something other than what it already is. It’s like adding pixels to a monitor, no amount of pixels will ever spontaneously morph into reality. The switch from a 2D representation of a 3D world is not something that is possible.
i heard this is where q* learning comes to play, this algorithm will allow it to reason
It’s all bullshit marketing hype until we actually see it. There’s no reason to believe AI will advance better than linearly in the next 5-10 years.
yes but the algorithm is real though
Funny how goals have evolved. From making a machine that is like a human to making one that is not.
Ah, irony. It’s common for people to say “AI art generators are just collage machines, copying and pasting bits of existing images together, unable to generate anything novel.” I guess there’s no intelligence there either, they’re just parroting each other.