It’s still not earning you money to spend electricity because you still have to pay the transfer fee which is around 6 cents / kWh but it’s pretty damn cheap nevertheless, mostly because of the excess in wind energy.
Last winter because of a mistake it dropped down to negative 50 cents / kWh for few hours, averaging negative 20 cents for the entire day. People were literally earning money by spending electricity. Some were running electric heaters outside in the middle of the winter.
This will hopefully lead to storage methods, maybe exportable ones like hydrogen
Hydrogen is not good for energy storage. Round trip efficiency is abysmal and its incredibly difficult to store in the first place
Of course not, hydrogen is pathetic compared to batteries and similar stored mass energy solutions, but hydrogen does have its place, the future should be a mixture of different solutions because many methods have their advantages and disadvantages, but having a mixture means we can apply the best solution to the viable problems. Let’s take transportation, you have a truck that earns money by travelling. If we want to transition away from fossil fuel, hydrogen makes sense over batteries that takes an hour to multiple hours to charge and the weight of the batteries reduce the overall payload of the truck.
Hydrogen has its place, and we need plenty of it in places where we don’t have viable alternatives. Road transport is pretty far down that list though.
The Clean Hydrogen Ladder
Hydrogen makes zero sense in vehicles too. Same storage issues coupled with more horrible fuel cell efficiency, plus modern batteries can charge at hundreds of kW
Don’t store it in diatomic form. Ammonia is the common alternative for hydrogen storage and transport, iirc
And even if round trip efficiency is poor, if renewables are in excess, it would be so much better to dump that energy into something that to have to curtail.
You just sent me down a rabbit hole, I had heard of electrolysis but didn’t realize that it was able to store energy on a large scale. Seems like a waste of water though.
Well the water isn’t disappearing anywhere and I believe that works on salt water as well
it works on salt water, submarines do it for oxygen, obviously, though you also have to deal with the salt build up, along with mineral build up, though unlike desalination, you can just run constant water flow through and yoink a small portion of it, you don’t have to yeet all the water. So that makes it easier.
How is it not disappearing if it’s turned into hydrogen?
Hydrogen reaction to oxygen in a fuel cell turns it back into water
So no water is lost?
Yes, basically. Enegy is used on H2O gets split and turned into H2 and O2, the H2 then in the fuel cell gets to react again with O2 to produce energy, less than what was used to split it, why it is inefficient, and now stable H20
That’s right!
Two H2 molecules (hydrogen) react with one O2 molecule (oxygen) to become two H2O molecules (water)
once you burn it
Splitting water and keeping the H2 converts the energy into chemical energy. The oxygen is just dumped into the atmosphere, which is a loss of efficiency I think? What I know, H2 is the highest form of chemical energy there is.
Some processes require burning, or cannot be electrified otherwise. It’s these where the hydrogen is needed directly. I think hydrogen is a source material that should be mostly be converted into other chemicals. Etc. methanol and ammonia are more easily storable, unlike diatomic hydrogen which can slowly diffuse through a metal wall, enbrittleling it. Clean ammonia production could replace a giant mass of fossil fuels.
Here is an another rabbit hole: most of your body’s nitrogen is from ammonia and the fertilizers made from it.