What concepts or facts do you know from math that is mind blowing, awesome, or simply fascinating?

Here are some I would like to share:

  • Gödel’s incompleteness theorems: There are some problems in math so difficult that it can never be solved no matter how much time you put into it.
  • Halting problem: It is impossible to write a program that can figure out whether or not any input program loops forever or finishes running. (Undecidablity)

The Busy Beaver function

Now this is the mind blowing one. What is the largest non-infinite number you know? Graham’s Number? TREE(3)? TREE(TREE(3))? This one will beat it easily.

  • The Busy Beaver function produces the fastest growing number that is theoretically possible. These numbers are so large we don’t even know if you can compute the function to get the value even with an infinitely powerful PC.
  • In fact, just the mere act of being able to compute the value would mean solving the hardest problems in mathematics.
  • Σ(1) = 1
  • Σ(4) = 13
  • Σ(6) > 101010101010101010101010101010 (10s are stacked on each other)
  • Σ(17) > Graham’s Number
  • Σ(27) If you can compute this function the Goldbach conjecture is false.
  • Σ(744) If you can compute this function the Riemann hypothesis is false.

Sources:

  • parrottail@sh.itjust.works
    link
    fedilink
    English
    arrow-up
    20
    ·
    1 year ago

    Godel’s incompleteness theorem is actually even more subtle and mind-blowing than how you describe it. It states that in any mathematical system, there are truths in that system that cannot be proven using just the mathematical rules of that system. It requires adding additional rules to that system to prove those truths. And when you do that, there are new things that are true that cannot be proven using the expanded rules of that mathematical system.

    "It’s true, we just can’t prove it’.

    • Reliant1087@lemmy.world
      link
      fedilink
      arrow-up
      4
      arrow-down
      1
      ·
      1 year ago

      Incompleteness doesn’t come as a huge surprise when your learn math in an axiomatic way rather than computationally. For me the treacherous part is actually knowing whether something is unprovable because of incompleteness or because no one has found a proof yet.