I’d rather go full electric and get rid of the gas infrastructure entirely tbh. Take that cost and put it towards local power generation+storage.
Heat pumps most of the time and radiant electric heat for the few times the heat pump won’t quite cut it. Geothermal if that’s an option in your location.
Counterpoint: electrifying homes is also a huge cost savings in general once you are at the point where you’re willing to forgo that big gas furnace in favor of an efficient heat pump system.
Cookers use very little gas. It’s really only water heaters and furnaces that use a lot of it, and heat pump units are incredibly efficient for both those tasks. Though I will admit that the noise a heat pump water heater makes is just atrocious and you’ll need to figure out if your can manage that in your life (e.g., by setting it to only run at night, when you’re out of the house, or putting it somewhere far away from where you spend time).
Keeping a gas hookup at $15+/month for a single appliance like a water heater or range is an expense a lot of people can and should trim, but instead they treat it like a sunk cost and think “well I have this one appliance, so I may as well get MORE gas appliances”. Which is intended. The whole “now you’re cooking with gas” campaign and all the nonsense ad campaigns about how gas ranges cook better than electric* was a deliberate (astroturf) marketing campaign from natural gas utilities because they knew that keeping electric cookers in the house would stop people from abandoning the appliances that ACTUALLY use gas but were hard to get people passionate about. This isn’t a conspiracy theory; we have the memos and POs.
* the difference is at best unnoticeable to the average cook and I truly believe the performance is worse, especially when factoring in time spent cleaning. Electric ovens are flatly better and modern electric cook tops work super well, even if not induction.
It’s not an argument I’ve seen in this conversation yet, but I’ll also head this off: gas ranges are not the best cooktop for ultimate temperature control either. If you cook sugar or temper chocolate a lot, a standalone induction cooktop like the Breville Control Freak will do a way better job, and you don’t need to change your permanent kitchen appliances to make that work. Combine that with an induction kettle like others have mentioned, and the broiler for peppers (I do this weekly having moved somewhere that doesn’t have gas) and there is literally no reason to choose gas in the kitchen.
Even modern radiant electric boils water faster (pretty typical for even a pretty low-end electric top to have a 3500-5000W quick boil burner). And induction or a kettle both do it a near order of magnitude faster. Not to mention none of them hugely heat up the room or require a superpower ventilator that sucks out your conditioned air. If boiling water fast is the task you care about, gas is almost certainly the worst choice. At least for home use.
Commercial kitchens are a different story that isn’t even part of the discussion. Even with three-phase power, to run an all-electric mid size-large commercial kitchen would likely require some crazy service level that wouldn’t be available in many places. It’ll be a while before that is an option.
I’ve found induction cooktops do just as well as gas at boiling water. The frustrating thing about them right now is the market is immature, so the good ones cost well over $1000 per burner and the cheap ones are so much worse (lousy coil sizes and poor heating precision) they aren’t worth using as anything more than a camping stove for tiny little pans where you don’t need precision. It’s like nobody in the industry wants to make these things good enough to actually replace the old technology, they just want to price gouge for all it’s worth while it’s still seen as the “expensive, hard to make, premium option”.
Very good induction cooktops are nowhere near $1,000 per hob and can boil water in a fraction the time as gas. Don’t buy the Frigidaire crapola and the stating price for a very good full induction convection range with 4-5 hobs is ~$1,250. Spend twice that and you’ll have a machine with no downsides.
I haven’t seen this argument listed yet, but my reason for wanting to go off natural gas is how much we lose in transmission. I don’t feel like finding sources right at this moment but most estimates I’ve seen are ~2%, and methane is a pretty potent greenhouse gas.
Methane is one of the cleanest burning fuels there is. There should be more effort put into fixing the distribution leaks rather than trying to switch everything to electric.
Fossil methane is still fossil. Ie. not part of the CO2 cycle, and thus contributing to the greenhouse effect. Methane itself is 20 times more potent, and we should do everything we can to limit methane emissions, both fossil and natural.
Agriculture is a big source of natural methane emissions, and even fairly small dietary changes can significantly reduce livestock emissions, but don’t see anyone doing that either.
Highly suspect small gas line leaks won’t be fixed either.
That is a rather big ask and maybe that effort would be better directed elsewhere.
Also, think of it this way. Isn’t it a bit crazy we send lines of pressurized, explosive gas directly to most homes in North America? If we do need to keep burning natural gas, we can do that in power plants and get about the same, if not better efficiency by using this electrical generation with heat pumps.
That’s a fair argument. Even if every used a tiny bit, there would still be a lot of loss to the atmosphere through leaks/etc of the distribution system.
So yes 100% elimination would be ideal.
But this could be a viable middle step between 100% gas heating -> Supplemental/Heat Pump -> 100% Heat Pump
You’re better off heating the inside of the house with gas that heating the outside of the house with gas and using the heat pump to transfer that heat into the house. Replacing the gas line with lines for the heat pump would be best.
I mean, in the colder climates that have natural gas piped to homes anyway.
Why not use a pilot light worth of gas to keep the evap side a tad bit warmer on the days that it drops real cold.
Sure, your still using some gas, but you’ll be extreme sipping at it.
I’d rather go full electric and get rid of the gas infrastructure entirely tbh. Take that cost and put it towards local power generation+storage.
Heat pumps most of the time and radiant electric heat for the few times the heat pump won’t quite cut it. Geothermal if that’s an option in your location.
Counterpoint: electrifying homes is also a huge cost savings in general once you are at the point where you’re willing to forgo that big gas furnace in favor of an efficient heat pump system.
Cookers use very little gas. It’s really only water heaters and furnaces that use a lot of it, and heat pump units are incredibly efficient for both those tasks. Though I will admit that the noise a heat pump water heater makes is just atrocious and you’ll need to figure out if your can manage that in your life (e.g., by setting it to only run at night, when you’re out of the house, or putting it somewhere far away from where you spend time).
Keeping a gas hookup at $15+/month for a single appliance like a water heater or range is an expense a lot of people can and should trim, but instead they treat it like a sunk cost and think “well I have this one appliance, so I may as well get MORE gas appliances”. Which is intended. The whole “now you’re cooking with gas” campaign and all the nonsense ad campaigns about how gas ranges cook better than electric* was a deliberate (astroturf) marketing campaign from natural gas utilities because they knew that keeping electric cookers in the house would stop people from abandoning the appliances that ACTUALLY use gas but were hard to get people passionate about. This isn’t a conspiracy theory; we have the memos and POs.
* the difference is at best unnoticeable to the average cook and I truly believe the performance is worse, especially when factoring in time spent cleaning. Electric ovens are flatly better and modern electric cook tops work super well, even if not induction.
It’s not an argument I’ve seen in this conversation yet, but I’ll also head this off: gas ranges are not the best cooktop for ultimate temperature control either. If you cook sugar or temper chocolate a lot, a standalone induction cooktop like the Breville Control Freak will do a way better job, and you don’t need to change your permanent kitchen appliances to make that work. Combine that with an induction kettle like others have mentioned, and the broiler for peppers (I do this weekly having moved somewhere that doesn’t have gas) and there is literally no reason to choose gas in the kitchen.
at $1,499.95 for a single burner it better damn well.
It’s for sure a professional tool, but nobody else really needs those features anyway.
Gas is great if you need to boil a pot of water right now. Like in a restaurant kitchen.
Any application that is not in a massive rush is just fine on electric.
Even modern radiant electric boils water faster (pretty typical for even a pretty low-end electric top to have a 3500-5000W quick boil burner). And induction or a kettle both do it a near order of magnitude faster. Not to mention none of them hugely heat up the room or require a superpower ventilator that sucks out your conditioned air. If boiling water fast is the task you care about, gas is almost certainly the worst choice. At least for home use.
Commercial kitchens are a different story that isn’t even part of the discussion. Even with three-phase power, to run an all-electric mid size-large commercial kitchen would likely require some crazy service level that wouldn’t be available in many places. It’ll be a while before that is an option.
I’ve found induction cooktops do just as well as gas at boiling water. The frustrating thing about them right now is the market is immature, so the good ones cost well over $1000 per burner and the cheap ones are so much worse (lousy coil sizes and poor heating precision) they aren’t worth using as anything more than a camping stove for tiny little pans where you don’t need precision. It’s like nobody in the industry wants to make these things good enough to actually replace the old technology, they just want to price gouge for all it’s worth while it’s still seen as the “expensive, hard to make, premium option”.
Very good induction cooktops are nowhere near $1,000 per hob and can boil water in a fraction the time as gas. Don’t buy the Frigidaire crapola and the stating price for a very good full induction convection range with 4-5 hobs is ~$1,250. Spend twice that and you’ll have a machine with no downsides.
Technology Connections on YT did a side-channel experiment on this very thing.
https://youtu.be/eUywI8YGy0Y
Normally I wholeheartedly recommend his stuff, but the side-channel content gets very long winded and rambling, linked video included.
Induction is much, much faster.
I haven’t seen this argument listed yet, but my reason for wanting to go off natural gas is how much we lose in transmission. I don’t feel like finding sources right at this moment but most estimates I’ve seen are ~2%, and methane is a pretty potent greenhouse gas.
Methane is one of the cleanest burning fuels there is. There should be more effort put into fixing the distribution leaks rather than trying to switch everything to electric.
Fossil methane is still fossil. Ie. not part of the CO2 cycle, and thus contributing to the greenhouse effect. Methane itself is 20 times more potent, and we should do everything we can to limit methane emissions, both fossil and natural.
Agriculture is a big source of natural methane emissions, and even fairly small dietary changes can significantly reduce livestock emissions, but don’t see anyone doing that either.
Highly suspect small gas line leaks won’t be fixed either.
That is a rather big ask and maybe that effort would be better directed elsewhere.
Also, think of it this way. Isn’t it a bit crazy we send lines of pressurized, explosive gas directly to most homes in North America? If we do need to keep burning natural gas, we can do that in power plants and get about the same, if not better efficiency by using this electrical generation with heat pumps.
That’s a fair argument. Even if every used a tiny bit, there would still be a lot of loss to the atmosphere through leaks/etc of the distribution system.
So yes 100% elimination would be ideal.
But this could be a viable middle step between 100% gas heating -> Supplemental/Heat Pump -> 100% Heat Pump
You’re better off heating the inside of the house with gas that heating the outside of the house with gas and using the heat pump to transfer that heat into the house. Replacing the gas line with lines for the heat pump would be best.