Apparently, stealing other people’s work to create product for money is now “fair use” as according to OpenAI because they are “innovating” (stealing). Yeah. Move fast and break things, huh?

“Because copyright today covers virtually every sort of human expression—including blogposts, photographs, forum posts, scraps of software code, and government documents—it would be impossible to train today’s leading AI models without using copyrighted materials,” wrote OpenAI in the House of Lords submission.

OpenAI claimed that the authors in that lawsuit “misconceive[d] the scope of copyright, failing to take into account the limitations and exceptions (including fair use) that properly leave room for innovations like the large language models now at the forefront of artificial intelligence.”

  • Haus@kbin.social
    link
    fedilink
    arrow-up
    49
    ·
    1 year ago

    Try to train a human comedian to make jokes without ever allowing him to hear another comedian’s jokes, never watching a movie, never reading a book or magazine, never watching a TV show. I expect the jokes would be pretty weak.

    • Phanatik@kbin.social
      link
      fedilink
      arrow-up
      81
      ·
      1 year ago

      A comedian isn’t forming a sentence based on what the most probable word is going to appear after the previous one. This is such a bullshit argument that reduces human competency to “monkey see thing to draw thing” and completely overlooks the craft and intent behind creative works. Do you know why ChatGPT uses certain words over others? Probability. It decided as a result of its training that one word would appear after the previous in certain contexts. It absolutely doesn’t take into account things like “maybe this word would be better here because the sound and syllables maintains the flow of the sentence”.

      Baffling takes from people who don’t know what they’re talking about.

      • frog 🐸@beehaw.org
        link
        fedilink
        English
        arrow-up
        47
        ·
        edit-2
        1 year ago

        I wish I could upvote this more than once.

        What people always seem to miss is that a human doesn’t need billions of examples to be able to produce something that’s kind of “eh, close enough”. Artists don’t look at billions of paintings. They look at a few, but do so deeply, absorbing not just the most likely distribution of brushstrokes, but why the painting looks the way it does. For a basis of comparison, I did an art and design course last year and looked at about 300 artworks in total (course requirement was 50-100). The research component on my design-related degree course is one page a week per module (so basically one example from the field the module is about, plus some analysis). The real bulk of the work humans do isn’t looking at billions of examples: it’s looking at a few, and then practicing the skill and developing a process that allows them to convey the thing they’re trying to express.

        If the AI models were really doing exactly the same thing humans do, the models could be trained without any copyright infringement at all, because all of the public domain and creative commons content, plus maybe licencing a little more, would be more than enough.

        • Phanatik@kbin.social
          link
          fedilink
          arrow-up
          15
          ·
          1 year ago

          Exactly! You can glean so much from a single work, not just about the work itself but who created it and what ideas were they trying to express and what does that tell us about the world they live in and how they see that world.

          This doesn’t even touch the fact that I’m learning to draw not by looking at other drawings but what exactly I’m trying to draw. I know at a base level, a drawing is a series of shapes made by hand whether it’s through a digital medium or traditional pen/pencil and paper. But the skill isn’t being able replicate other drawings, it’s being able to convert something I can see into a drawing. If I’m drawing someone sitting in a wheelchair, then I’ll get the pose of them sitting in the wheelchair but I can add details I want to emphasise or remove details I don’t want. There’s so much that goes into creative work and I’m tired of arguing with people who have no idea what it takes to produce creative works.

          • frog 🐸@beehaw.org
            link
            fedilink
            English
            arrow-up
            19
            ·
            1 year ago

            It seems that most of the people who think what humans and AIs do is the same thing are not actually creatives themselves. Their level of understanding of what it takes to draw goes no further than “well anyone can draw, children do it all the time”. They have the same respect for writing, of course, equating the ability to string words together to write an email, with the process it takes to write a brilliant novel or script. They don’t get it, and to an extent, that’s fine - not everybody needs to understand everything. But they should at least have the decency to listen to the people that do get it.

            • intensely_human@lemm.ee
              link
              fedilink
              arrow-up
              1
              ·
              1 year ago

              Well, that’s not me. I’m a creative, and I see deep parallels between how LLMs work and how my own mind works.

              • frog 🐸@beehaw.org
                link
                fedilink
                English
                arrow-up
                3
                ·
                1 year ago

                Either you’re vastly overestimating the degree of understanding and insight AIs possess, or you’re vastly underestimating your own capabilities. :)

                • jarfil@beehaw.org
                  link
                  fedilink
                  arrow-up
                  1
                  ·
                  1 year ago

                  Alternatively, you might be vastly overestimating human “understanding and insight”, or how much of it is really needed to create stuff.

                  • frog 🐸@beehaw.org
                    link
                    fedilink
                    English
                    arrow-up
                    2
                    ·
                    edit-2
                    1 year ago

                    Average humans, sure, don’t have a lot of understanding and insight, and little is needed to be able to draw a doodle on some paper. But trained artists have a lot of it, because part of the process is learning to interpret artworks and work out why the artist used a particular composition or colour or object. To create really great art, you do actually need a lot of understanding and insight, because everything in your work will have been put there deliberately, not just to fill up space.

                    An AI doesn’t know why it’s put an apple on the table rather than an orange, it just does it because human artists have done it - it doesn’t know what apples mean on a semiotic level to the human artist or the humans that look at the painting. But humans do understand what apples represent - they may not pick up on it consciously, but somewhere in the backs of their minds, they’ll see an apple in a painting and it’ll make the painting mean something different than if the fruit had been an orange.

        • Even_Adder@lemmy.dbzer0.com
          link
          fedilink
          English
          arrow-up
          5
          ·
          1 year ago

          When people say that the “model is learning from its training data”, it means just that, not that it is human, and not that it learns exactly humans. It doesn’t make sense to judge boats on how well they simulate human swimming patterns, just how well they perform their task.

          Every human has the benefit of as a baby training on things around them and being trained by those around them, building a foundation for all later skills. Generative models rely on many text and image pairs to describe things to them because they lack the ability to poke, prod, rotate, and disassemble for themselves.

          For example, when a model takes in a thousand images of circles, it doesn’t “learn” a thousand circles. It learns what circle GENERALLY is like, the concept of it. That representation, along with random noise, is how you create images with them. The same happens for every concept the model trains on. Everything from “cat” to more complex things like color relationships and reflections or lighting. Machines are not human, but they can learn despite that.

        • teawrecks@sopuli.xyz
          link
          fedilink
          arrow-up
          3
          ·
          1 year ago

          What you count as “one” example is arbitrary. In terms of pixels, you’re looking at millions right now.

          The ability to train faster using fewer examples in real time, similar to what an intelligent human brain can do, is definitely a goal of AI research. But right now, we may be seeing from AI what a below average human brain could accomplish with hundreds of lifetimes to study.

          If the AI models were really doing exactly the same thing humans do, the models could be trained without any copyright infringement at all, because all of the public domain and creative commons content, plus maybe licencing a little more, would be more than enough.

          I mean, no, if you only ever look at public domain stuff you literally wouldn’t know the state of the art, which is historically happening for profit. Even the most untrained artist “doing their own thing” watches Disney/Pixar movies and listens to copyrighted music.

          • frog 🐸@beehaw.org
            link
            fedilink
            English
            arrow-up
            4
            ·
            1 year ago

            If we’re going by the number of pixels being viewed, then you have to use the same measure for both humans and AIs - and because AIs have to look at billions of images while humans do not, the AI still requires far more pixels than a human does.

            And humans don’t require the most modern art in order to learn to draw at all. Sure, if they want to compete with modern artists, they would need to look at modern artists (for which educational fair use exists, and again the quantity of art being used by the human for this purpose is massively lower than what an AI uses - a human does not need to consume billions of artworks from modern artists in order to learn what the current trends are). But a human could learn to draw, paint, sculpt, etc purely by only looking at public domain and creative commons works, because the process for drawing, say, the human figure (with the right number of fingers!) has not changed in hundreds of years. A human can also just… go outside and draw things they see themselves, because the sky above them and the tree across the street aren’t copyrighted. And in fact, I’d argue that a good artist should go out and find real things to draw.

            OpenAI’s argument is literally that their AI cannot learn without using copyrighted materials in vast quantities - too vast for them to simply compensate all the creators. So it genuinely is not comparable to a human, because humans can, in fact, learn without using copyrighted material. If OpenAI’s argument is actually that their AI can’t compete commercially with modern art without using copyrighted works, then they should be honest about that - but then they’d be showing their hand, wouldn’t they?

            • teawrecks@sopuli.xyz
              link
              fedilink
              arrow-up
              2
              ·
              1 year ago

              Sure, if they want to compete with modern artists, they would need to look at modern artists

              Which is the literal goal of Dall-E, SD, etc.

              But a human could learn to draw, paint, sculpt, etc purely by only looking at public domain and creative commons works

              They could definitely learn some amount of skill, I agree. I’d be very interested to see the best that an AI could achieve using only PD and CC content. It would be interesting. But you’d agree that it would look very different from modern art, just as an alien who has only been consuming earth media from 100+ years ago would be unable to relate to us.

              the sky above them and the tree across the street aren’t copyrighted.

              Yeah, I’d consider that PD/CC content that such an AI would easily have access to. But obviously the real sky is something entirely different from what is depicted in Starry Night, Star Wars, or H.P. Lovecraft’s description of the cosmos.

              OpenAI’s argument is literally that their AI cannot learn without using copyrighted materials in vast quantities

              Yeah, I’d consider that a strong claim on their part; what they really mean is, it’s the easiest way to make progress in AI, and we wouldn’t be anywhere close to where we are without it.

              And you could argue “convenient that it both saves them money, and generates money for them to do it this way”, but I’d also point out that the alternative is they keep the trained models closed source, never using them publicly until they advance the tech far enough that they’ve literally figured out how to build/simulate a human brain that is able to learn as quickly and human-like as you’re describing. And then we find ourselves in a world where one or two corporations have this incredible proprietary ability that no one else has.

              Personally, I’d rather live in the world where the information about how to do all of this isn’t kept for one or two corporations to profit from, I would rather live in the version where they publish their work publicly, early, and often, show that it works, and people are able to reproduce it, open source it, train their own models, and advance the technology in a space where anyone can use it.

              You could hypothesize of a middle ground where they do the research, but aren’t allowed to profit from it without licensing every bit of data they train on. But the reality of AI research is that it only happens to the extent that it generates revenue. It’s been that way for the entire history of AI. Douglas Hofstadter has been asking deep important questions about AI as it relates to consciousness for like 60 years (ex. GEB, I am a Strange Loop), but there’s a reason he didn’t discover LLMs and tech companies did. That’s not to say his writings are meaningless, in fact I think they’re more important than ever before, but he just wasn’t ever going to get to this point with a small team of grad students, a research grant, and some public domain datasets.

              So, it’s hard to disagree with OpenAI there, AI definitely wouldn’t be where it is without them doing what they’ve done. And I’m a firm believer that unless we figure our shit out with energy generation soon, the earth will be an uninhabitable wasteland. We’re playing a game of climb the Kardashev scale, we opted for the “burn all the fossil fuels as fast as possible” strategy, and now we’re a the point where either spent enough energy fast enough to figure out the tech needed to survive this, or we suffocate on the fumes. The clock is ticking, and AI may be our best bet at saving the human race that doesn’t involve an inordinate number of people dying.

              • frog 🐸@beehaw.org
                link
                fedilink
                English
                arrow-up
                1
                ·
                1 year ago

                OpenAI are not going to make the source code for their model accessible to all to learn from. This is 100% about profiting from it themselves. And using copyrighted data to create open source models would seem to violate the very principles the open source community stands for - namely that everybody contributes what they agree to, and everything is published under a licence. If the basis of an open source model is a vast quantity of training data from a vast quantity of extremely pissed off artists, at least some of the people working on that model are going to have a “are we the baddies?” moment.

                The AI models are also never going to produce a solution to climate change that humans will accept. We already know what the solution is, but nobody wants to hear it, and expecting anyone to listen to ChatGPT and suddenly change their minds about using fossil fuels is ludicrous. And an AI that is trained specifically on knowledge about the climate and technologies that can improve it, with the purpose of innovating some hypothetical technology that will fix everything without humans changing any of their behaviour, categorically does not need the entire contents of ArtStation in its training data. AIs that are trained to do specific tasks, like the ones trained to identify new antibiotics, are trained on a very limited set of data, most of which is not protected by copyright and any that is can be easily licenced because the quantity is so small - and you don’t see anybody complaining about those models!

                • teawrecks@sopuli.xyz
                  link
                  fedilink
                  arrow-up
                  2
                  ·
                  1 year ago

                  OpenAI are not going to make the source code for their model accessible to all to learn from

                  OpenAI isn’t the only company doing this, nor is their specific model the knowledge that I’m referring to.

                  The AI models are also never going to produce a solution to climate change that humans will accept.

                  It is already being used to further fusion research beyond anything we’ve been able to do with standard algorithms

                  We already know what the solution is, but nobody wants to hear it

                  Then it’s not a solution. That’s like telling your therapist, “I know how to fix my relationship, my partner just won’t do it!”

                  expecting anyone to listen to ChatGPT and suddenly change their minds about using fossil fuels is ludicrous

                  Lol. Yeah, I agree, that’s never going to work.

                  categorically does not need the entire contents of ArtStation in its training data.

                  That’s a strong claim to make. Regardless of the ethics involved, or the problems the AI can solve today, the fact is we seeing rapid advances in AI research as a direct result of these ethically dubious models.

                  In general, I’m all for the capitalist method of artists being paid their fair share for the work they do, but on the flip side, I see a very possible mass extinction event on the horizon, which could cause suffering the likes of which humanity has never seen. If we assume that is the case, and we assume AI has a chance of preventing it, then I would prioritize that over people’s profits today. And I think it’s perfectly reasonable to say I’m wrong.

                  And then there’s the problem of actually enforcing any sort of regulation, which would be so much more difficult than people here are willing to admit. There’s basically nothing you can do even if you wanted to. Your Carlin example is exactly the defense a company would use: “I guess our AI just happened to create a movie that sounds just like Paul Blart, but we swear it’s never seen the film. Great minds think alike, I guess, and we sell only the greatest of minds”.

                  • frog 🐸@beehaw.org
                    link
                    fedilink
                    English
                    arrow-up
                    1
                    ·
                    1 year ago

                    Personally I think the claim that the entire contents of ArtStation will lead to working technology that fixes climate change is the bolder claim - and if there was any merit to it, there would be some evidence for it that the corporations who want copyright to be disapplied to artists would be able to produce. And if we’re saying that getting rid of copyright protections will save the planet, then perhaps Disney should give up theirs as well. Because that’s the reality here: we’re expecting humans to be obliterated by AI but are not expecting the rich and powerful to make any sacrifices at all. And art is part of who we are as a species, and has been for hundreds of thousands of years. Replacing artists with AI because somehow that will fix climate change is not only a massive stretch, but what would we even be saving humanity for at that point? So that everybody can slave away in insecure, meaningless work so the few can hoard everything for themselves? Because the Star Trek utopia where AI does all the work and humans can pursue self-enrichment is not an option on the table. The tech bros just want you to think it is.

            • Even_Adder@lemmy.dbzer0.com
              link
              fedilink
              English
              arrow-up
              2
              ·
              1 year ago

              It isn’t wrong to use copyrighted works for training. Let me quote an article by the EFF here:

              First, copyright law doesn’t prevent you from making factual observations about a work or copying the facts embodied in a work (this is called the “idea/expression distinction”). Rather, copyright forbids you from copying the work’s creative expression in a way that could substitute for the original, and from making “derivative works” when those works copy too much creative expression from the original.

              Second, even if a person makes a copy or a derivative work, the use is not infringing if it is a “fair use.” Whether a use is fair depends on a number of factors, including the purpose of the use, the nature of the original work, how much is used, and potential harm to the market for the original work.

              and

              Even if a court concludes that a model is a derivative work under copyright law, creating the model is likely a lawful fair use. Fair use protects reverse engineering, indexing for search engines, and other forms of analysis that create new knowledge about works or bodies of works. Here, the fact that the model is used to create new works weighs in favor of fair use as does the fact that the model consists of original analysis of the training images in comparison with one another.

              What you want would swing the doors open for corporate interference like hindering competition, stifling unwanted speech, and monopolization like nothing we’ve seen before. There are very good reasons people have these rights, and we shouldn’t be trying to change this. Ultimately, it’s apparent to me, you are in favor of these things. That you believe artists deserve a monopoly on ideas and non-specific expression, to the detriment of anyone else. If I’m wrong, please explain to me how.

              If we’re going by the number of pixels being viewed, then you have to use the same measure for both humans and AIs - and because AIs have to look at billions of images while humans do not, the AI still requires far more pixels than a human does.

              Humans benefit from years of evolutionary development and corporeal bodies to explore and interact with their world before they’re ever expected to produce complex art. AI need huge datasets to understand patterns to make up for this disadvantage. Nobody pops out of the womb with fully formed fine motor skills, pattern recognition, understanding of cause and effect, shapes, comparison, counting, vocabulary related to art, and spatial reasoning. Datasets are huge and filled with image-caption pairs to teach models all of this from scratch. AI isn’t human, and we shouldn’t judge it against them, just like we don’t judge boats on their rowing ability.

              And humans don’t require the most modern art in order to learn to draw at all. Sure, if they want to compete with modern artists, they would need to look at modern artists (for which educational fair use exists, and again the quantity of art being used by the human for this purpose is massively lower than what an AI uses - a human does not need to consume billions of artworks from modern artists in order to learn what the current trends are). But a human could learn to draw, paint, sculpt, etc purely by only looking at public domain and creative commons works, because the process for drawing, say, the human figure (with the right number of fingers!) has not changed in hundreds of years. A human can also just… go outside and draw things they see themselves, because the sky above them and the tree across the street aren’t copyrighted. And in fact, I’d argue that a good artist should go out and find real things to draw.

              AI don’t require most modern art in order to learn to make images either, but the range of expression would be limited, just like a human’s in this situation. You can see this in cave paintings and early sculptures. They wouldn’t be limited to this same degree, but you would still be limited.

              It took us 100,000 years to get from cave drawings to Leonard Da Vinci. This is just another step for artists, like Camera Obscura was in the past. It’s important to remember that early man was as smart as we are, they just lacked the interconnectivity to exchange ideas that we have.

        • intensely_human@lemm.ee
          link
          fedilink
          arrow-up
          2
          ·
          1 year ago

          When you look at one painting, is that the equivalent of one instance of the painting in the training data? There is an infinite amount of information in the painting, and each time you look you process more of that information.

          I’d say any given painting you look at in a museum, you process at least a hundred mental images of aspects of it. A painting on your wall could be seen ten thousand times easily.

      • DaDragon@kbin.social
        link
        fedilink
        arrow-up
        15
        ·
        1 year ago

        That’s what humans do, though. Maybe not probability directly, but we all know that some words should be put in a certain order. We still operate within standard norms that apply to aparte group of people. LLM’s just go about it in a different way, but they achieve the same general result. If I’m drawing a human, that means there’s a ‘hand’ here, and a ‘head’ there. ‘Head’ is a weird combination of pixels that mostly look like this, ‘hand’ looks kinda like that. All depends on how the model is structured, but tell me that’s not very similar to a simplified version of how humans operate.

        • Phanatik@kbin.social
          link
          fedilink
          arrow-up
          9
          ·
          1 year ago

          Yeah but the difference is we still choose our words. We can still alter sentences on the fly. I can think of a sentence and understand verbs go after the subject but I still have the cognition to alter the sentence to have the effect I want. The thing lacking in LLMs is intent and I’m yet to see anyone tell me why a generative model decides to have more than 6 fingers. As humans we know hands generally have five fingers and there’s a group of people who don’t so unless we wanted to draw a person with a different number of fingers, we could. A generative art model can’t help itself from drawing multiple fingers because all it understands is that “finger + finger = hand” but it has no concept on when to stop.

          • DaDragon@kbin.social
            link
            fedilink
            arrow-up
            6
            ·
            1 year ago

            And that’s the reason why LLM generated content isn’t considered creative.

            I do believe that the person using the device has a right to copyright the unique method they used to generate the content, but the content itself isn’t anything worth protecting.

            • Phanatik@kbin.social
              link
              fedilink
              arrow-up
              7
              ·
              1 year ago

              You say that yet I initially responded to someone who was comparing an LLM to what a comedian does.

              There is no unique method because there’s hardly anything unique you can do. Two people using Stable Diffusion to produce an image are putting in the same amount of work. One might put more time into crafting the right prompt but that’s not work you’re doing.

              If 90% of the work is handled by the model, and you just layer on whatever extra thing you wanted, that doesn’t mean you created the thing. That also implies you have much control over the output. You’re effectively negotiating with this machine to produce what you want.

              • Nyfure@kbin.social
                link
                fedilink
                arrow-up
                3
                ·
                1 year ago

                more time into crafting the right prompt

                Thats not work to you? My company pays me to spend time to do the right thing, even though most of the work does the computer.

                I see where you are going at, but your argument also invalidates other forms of human interaction and creating.

                In my country copyright can only be granted if a certain amount of (human) work went into something. Any work.
                The difficult part is finding out whats enough and what kind of work qualify to lead to some kind of protection, even if partial.
                The difficult part was not to create something, but to prove someone did or didnt put enough work into it.
                I think we can hold generated or assisted goods to the same standard.

                Putting a simple prompt together should probably not be granted protection as no significant work went into it. But refining it, editing the result… maybe thats enough, thats really up to the society to decide.

                At the same time we have to balance the power of machines against human work, so the human work doesnt get totally invalidated, but rather shifted and treated as sub-type.
                Machines already replaced alot of work, also creative ones. Book-printing, forging, producing food… the scary part about generative AI is mainly the speed of them spreading.

                • Phanatik@kbin.social
                  link
                  fedilink
                  arrow-up
                  6
                  ·
                  1 year ago

                  So as a data analyst a lot of my work is done through a computer but I can apply my same skills if someone hands me a piece of paper with data printed on it and told me to come up with solutions to the problems with it. I don’t need the computer to do what I need to do, it makes it easier to manipulate data but the degree of problem solving required needs to be done by a human and that’s why it’s my job. If a machine could do it, then they would be doing it but they aren’t because contrary to what people believe about data analysis, you have to be somewhat creative to do it well.

                  Crafting a prompt is an exercise in trial and error. It’s work but it’s not skilled work. It doesn’t take talent or practice to do. Despite the prompt, you are still at the mercy of the machine.

                  Even by the case you’ve presented, I have to ask, at what point of a human editing the output of a generative model constitutes it being your own work and not the machine’s? How much do you have to change? Can you give me a %?

                  Machines were intended to automate the tedious tasks that we all have to suffer to free up our brains for more engaging things which might include creative pursuits. Automation exists to make your life easier, not to rob you of life’s pursuits or your livelihood. It never should’ve been used to produce creative work and I find the attempts to equate this abomination’s outputs to what artists have been doing for years, utterly deplorable.

              • DaDragon@kbin.social
                link
                fedilink
                arrow-up
                3
                ·
                1 year ago

                Wouldn’t that lead to the same argument as originally brought against photography, though?

                A photographer is effectively negotiating with the sun, the sky and everything else to hopefully get the result they are looking for on their device.

                • Phanatik@kbin.social
                  link
                  fedilink
                  arrow-up
                  5
                  ·
                  1 year ago

                  One difference is that the photographer has to go the places they’re taking pictures of.

                  Another is that photography isn’t comparable to paintings and it never has been. I’m willing to bet photography and paintings have never coexisted in a contest. Except, when people say their generative art is comparable to what artists have been producing by hand, they are admitting that generative art has more in common with photography than it does with hand-crafted art but they want the prestige and recognition those artists get for their work.

          • intensely_human@lemm.ee
            link
            fedilink
            arrow-up
            3
            ·
            1 year ago

            I don’t choose my words man. I get a vague sense of the meaning I want to convey and the words just form themselves.

      • hascat@programming.dev
        link
        fedilink
        English
        arrow-up
        6
        ·
        1 year ago

        That’s not the point though. The point is that the human comedian and the AI both benefit from consuming creative works covered by copyright.

        • Phanatik@kbin.social
          link
          fedilink
          arrow-up
          10
          ·
          1 year ago

          Yeah except a machine is owned by a company and doesn’t consume the same way. It breaks down copyrighted works into data points so it can find the best way of putting those data points together again. If you understand anything at all about how these models work, they do not consume media the same way we do. It is not an entity with a thought process or consciousness (despite the misleading marketing of “AI” would have you believe), it’s an optimisation algorithm.

            • Phanatik@kbin.social
              link
              fedilink
              arrow-up
              4
              ·
              1 year ago

              It’s so funny that this is something new. This was Grammarly’s whole schtick since before ChatGPT so how different is Grammarly AI?

              • vexikron@lemmy.zip
                link
                fedilink
                arrow-up
                3
                ·
                1 year ago

                Here is the bigger picture: The vast majority of tech illiterate people think something is AI because duh its called AI.

                Its literally just the power of branding and marketing on the minds of poorly informed humans.

                Unfortunately this is essentially a reverse Turing Test.

                The vast majority of humans do not know anything about AI, and also a huge majority of them can also barely tell the difference between, currently in some but not all forms, output from what is basically a brute force total internet plagiarism and synthesis software, from many actual human created content in many cases.

                To me this basically just means that about 99% of the time, most humans are actually literally NPCs, and they only do actual creative and unpredictable things very very rarely.

                • intensely_human@lemm.ee
                  link
                  fedilink
                  arrow-up
                  1
                  ·
                  1 year ago

                  I call it AI because it’s artificial and it’s intelligent. It’s not that complicated.

                  The thing we have to remember is how scary and disruptive AI is. Given that fear, it is scary to acknowledge that we have AI emerging into our world. Because it is scary, that pushes us to want to ignore it.

                  It’s called denial, and it’s the best explanation for why people aren’t willing to acknowledge that LLMs are AI.

                  • vexikron@lemmy.zip
                    link
                    fedilink
                    arrow-up
                    2
                    ·
                    1 year ago

                    It meets almost none of the conceptions of intelligence at all.

                    It is not capable of abstraction.

                    It is capable of brute force understanding similarities between various images and text, and then presenting a wide array of text and images containing elements that reasonably well emulate a wide array of descriptors.

                    This is convincing to many people that it has a large knowledge set.

                    But that is not abstraction.

                    It is not capable of logic.

                    It is only capable of again brute force analyzing an astounding amount of content and then producing essentially the consensus view on answers to common logical problems.

                    Ask it any complex logical question that has never been answered on the internet before and it will output irrelevant or inaccurate nonsense, likely just finding an answer to a similar but not identical question.

                    The same goes for reasoning, planning, critical thinking and problem solving.

                    If you ask it to do any of these things in a highly specific situation even giving it as much information as possible, if your situation is novel or even simply too complex, it will again just spit out a non sense answer that is basically going to be very inadequate and faulty because it will just draw elements together from the closest things it has been trained on, nearly certainly being contradictory or entirely dubious due to being unable to account for a particularly uncommon constraint, or constraints that are very uncommonly faced simultaneously.

                    It is not creative, in the sense of being able to generate something novel or new.

                    All it does is plagiarize elements of things that are popular and have many examples of and then attempt mix them together, but it will never generate a new art style or a new genre of music.

                    It does not even really infer things, is not really capable of inference.

                    It simply has a massive, astounding data set, and the ability to synthesize elements from this in a convincing way.

                    In conclusion, you have no idea what you are talking about, and you yourself literally are one of the people who has failed the reverse Turing Test, likely because you are not very well very versed in the technicals of how this stuff actually works, thus proving my point that you simply believe it is AI because of its branding, with no critical thought applied whatsoever.

        • vexikron@lemmy.zip
          link
          fedilink
          arrow-up
          5
          ·
          edit-2
          1 year ago

          And human comedians regularly get called out when they outright steal others material and present it as their own.

          The word for this is plagiarism.

          And in OpenAIs framework, when used in a relevant commercial context, they are functionally operating and profiting off of the worlds most comprehensive plagiarism software.

      • teawrecks@sopuli.xyz
        link
        fedilink
        arrow-up
        3
        ·
        1 year ago

        A comedian isn’t forming a sentence based on what the most probable word is going to appear after the previous one.

        Neither is an LLM. What you’re describing is a primitive Markov chain.

        You may not like it, but brains really are just glorified pattern recognition and generation machines. So yes, “monkey see thing to draw thing”, except a really complicated version of that.

        Think of it this way: if your brain wasn’t a reorganization and regurgitation of the things you have observed before, it would just generate random noise. There’s no such thing as “truly original” art or it would be random noise. Every single word either of us is typing is the direct result of everything you and I have observed before this moment.

        Baffling takes from people who don’t know what they’re talking about.

        Ironic, to say the least.

        The point you should be making, is that a corporation will make this above argument up to, but not including the point where they have to treat AIs ethically. So that’s the way to beat them. If they’re going to argue that they have created something that learns and creates content like a human brain, then they should need to treat it like a human, ensure it is well compensated, ensure it isn’t being overworked or enslaved, ensure it is being treated “humanely”. If they don’t want to do that, if they want it to just be a well built machine, then they need to license all the proprietary data they used to build it. Make them pick a lane.

        • Phanatik@kbin.social
          link
          fedilink
          arrow-up
          1
          ·
          1 year ago

          Neither is an LLM. What you’re describing is a primitive Markov chain.

          My description might’ve been indicative of a Markov chain but the actual framework uses matrices because you need to be able to store and compute a huge amount of information at once which is what matrices are good for. Used in animation if you didn’t know.

          What it actually uses is irrelevant, how it uses those things is the same as a regression model, the difference is scale. A regression model looks at how related variables are in giving an outcome and computing weights to give you the best outcome. This was the machine learning boom a couple of years ago and TensorFlow became really popular.

          LLMs are an evolution of the same idea. I’m not saying it’s not impressive because it’s very cool what they were able to do. What I take issue with is the branding, the marketing and the plagiarism. I happen to be in the intersection of working in the same field, an avid fan of classic Sci-Fi and a writer.

          It’s easy to look at what people have created throughout history and think “this looks like that” and on a point by point basis you’d be correct but the creation of that thing is shaped by the lens of the person creating it. Someone might make a George Carlin joke that we’ve heard recently but we’ll read about it in newspapers from 200 years ago. Did George Carlin steal the idea? No. Was he aware of that information? I don’t know. But Carlin regularly calls upon his own experiences so it’s likely that he’s referencing a event from his past that is similar to that of 200 years ago. He might’ve subconsciously absorbed the information.

          The point is that the way these models have been trained is unethical. They used material they had no license to use and they’ve admitted that it couldn’t work as well as it does without stealing other people’s work. I don’t think they’re taking the position that it’s intelligent because from the beginning that was a marketing ploy. They’re taking the position that they should be allowed to use the data they stole because there was no other way.

      • intensely_human@lemm.ee
        link
        fedilink
        arrow-up
        1
        ·
        1 year ago

        Text prediction seems to be sufficient to explain all verbal communication to me. Until someone comes up with a use case that humans can do that LLMs cannot, and I mean a specific use case not general high level concepts, I’m going to assume human verbal cognition works the same was as an LLM.

        We are absolutely basing our responses on what words are likely to follow which other ones. It’s literally how a baby learns language from those around them.

        • chaos@beehaw.org
          link
          fedilink
          arrow-up
          5
          ·
          1 year ago

          If you ask an LLM to help you with a legal brief, it’ll come up with a bunch of stuff for you, and some of it might even be right. But it’ll very likely do things like make up a case that doesn’t exist, or misrepresent a real case, and as has happened multiple times now, if you submit that work to a judge without a real lawyer checking it first, you’re going to have a bad time.

          There’s a reason LLMs make stuff up like that, and it’s because they have been very, very narrowly trained when compared to a human. The training process is almost entirely getting good at predicting what words follow what other words, but humans get that and so much more. Babies aren’t just associating the sounds they hear, they’re also associating the things they see, the things they feel, and the signals their body is sending them. Babies are highly motivated to learn and predict the behavior of the humans around them, and as they get older and more advanced, they get rewarded for creating accurate models of the mental state of others, mastering abstract concepts, and doing things like make art or sing songs. Their brains are many times bigger than even the biggest LLM, their initial state has been primed for success by millions of years of evolution, and the training set is every moment of human life.

          LLMs aren’t nearly at that level. That’s not to say what they do isn’t impressive, because it really is. They can also synthesize unrelated concepts together in a stunningly human way, even things that they’ve never been trained on specifically. They’ve picked up a lot of surprising nuance just from the text they’ve been fed, and it’s convincing enough to think that something magical is going on. But ultimately, they’ve been optimized to predict words, and that’s what they’re good at, and although they’ve clearly developed some impressive skills to accomplish that task, it’s not even close to human level. They spit out a bunch of nonsense when what they should be saying is “I have no idea how to write a legal document, you need a lawyer for that”, but that would require them to have a sense of their own capabilities, a sense of what they know and why they know it and where it all came from, knowledge of the consequences of their actions and a desire to avoid causing harm, and they don’t have that. And how could they? Their training didn’t include any of that, it was mostly about words.

          One of the reasons LLMs seem so impressive is that human words are a reflection of the rich inner life of the person you’re talking to. You say something to a person, and your ideas are broken down and manipulated in an abstract manner in their head, then turned back into words forming a response which they say back to you. LLMs are piggybacking off of that a bit, by getting good at mimicking language they are able to hide that their heads are relatively empty. Spitting out a statistically likely answer to the question “as an AI, do you want to take over the world?” is very different from considering the ideas, forming an opinion about them, and responding with that opinion. LLMs aren’t just doing statistics, but you don’t have to go too far down that spectrum before the answers start seeming thoughtful.

      • SuperSaiyanSwag@lemmy.zip
        link
        fedilink
        English
        arrow-up
        1
        ·
        edit-2
        1 year ago

        Am I a moron? How do you have more upvotes than the parent comment, is it because you’re being more aggressive with your statement? I feel like you didn’t quite refute what the parent comment said. You’re just explaining how Chat GPT works, but you’re not really saying how it shouldn’t use our established media (copyrighted material) as a reference.

        • Phanatik@kbin.social
          link
          fedilink
          arrow-up
          1
          ·
          edit-2
          1 year ago

          I don’t control the upvotes so I don’t know why that’s directed at me.

          The refutation was based on around a misunderstanding of how LLMs generate their outputs and how the training data assists the LLM in doing what it does. The article itself tells you ChatGPT was trained off of copyrighted material they were not licensed for. The person I responded to suggested that comedians do this with their work but that’s equating the process an LLM uses when producing an output to a comedian writing jokes.

          Edit: Apologies if I do come across aggressive. Since the plagiarism machine has been in full swing, the whole discourse around it has gotten on my nerves. I’m a creative person, I’ve written poems and short stories, I’m writing a novel and I also do programming and a whole host of hobbies so when LLMs are used to put people like me out of a job using my own work, why wouldn’t that make me angry? What makes it worse is that I’m having to explain concepts to people regarding LLMs that they continue to defend. I can’t stand it so yes, I will come off aggressive.

          • SuperSaiyanSwag@lemmy.zip
            link
            fedilink
            English
            arrow-up
            1
            ·
            1 year ago

            Sorry, I was essentially emphasizing on my initial point “am I a moron?”, lol, because I legitimately didn’t get your point at first like others do in this thread.

            I get what you mean now after reading it couple more times

    • luciole (he/him)@beehaw.org
      link
      fedilink
      arrow-up
      15
      ·
      edit-2
      1 year ago

      There’s this linguistic problem where one word is used for two different things, it becomes difficult to tell them apart. “Training” or “learning” is a very poor choice of word to describe the calibration of a neural network. The actor and action are both fundamentally different from the accepted meaning. To start with, human learning is active whereas machining learning is strictly passive: it’s something done by someone with the machine as a tool. Teachers know very well that’s not how it happens with humans.

      When I compare training a neural network with how I trained to play clarinet, I fail to see any parallel. The two are about as close as a horse and a seahorse.

      • intensely_human@lemm.ee
        link
        fedilink
        arrow-up
        1
        ·
        1 year ago

        Not sure what you mean by passive. It takes a hell of a lot of electricity to train one of these LLMs so something is happening actively.

        I often interact with ChatGPT 4 as if it were a child. I guide it through different kinds of mental problems, having it take notes and evaluate its own output, because I know our conversations become part of its training data.

        It feels very much like teaching a kid to me.

        • luciole (he/him)@beehaw.org
          link
          fedilink
          arrow-up
          7
          ·
          edit-2
          1 year ago

          I mean passive in terms of will. Computers want and do nothing. They’re machines that function according to commands.

          The way you feel like teaching a child when you feed input in natural language to a LLM until you’re satisfied with the output is known as the ELIZA effect. To quote Wikipedia:

          In computer science, the ELIZA effect is the tendency to project human traits — such as experience, semantic comprehension or empathy — into computer programs that have a textual interface. The effect is a category mistake that arises when the program’s symbolic computations are described through terms such as “think”, “know” or “understand.”

    • sculd@beehaw.orgOP
      link
      fedilink
      arrow-up
      9
      ·
      1 year ago

      AIs are not humans. Humans cannot read millions of texts in seconds and cannot split out millions of output at the same time.

    • sub_o@beehaw.org
      link
      fedilink
      English
      arrow-up
      1
      ·
      1 year ago

      Try to train a human comedian to make jokes without ever allowing him to hear another comedian’s jokes, never watching a movie, never reading a book or magazine, never watching a TV show. I expect the jokes would be pretty weak.