[T]he report’s executive summary certainly gets to the heart of their findings.
“The rhetoric from small modular reactor (SMR) advocates is loud and persistent: This time will be different because the cost overruns and schedule delays that have plagued large reactor construction projects will not be repeated with the new designs,” says the report. “But the few SMRs that have been built (or have been started) paint a different picture – one that looks startlingly similar to the past. Significant construction delays are still the norm and costs have continued to climb.”
From where I stand you couldn’t be further from the reality of the situation.
Nuclear has a number of advantages from low carbon output per kilowatt over lifetime as well as being extremely cheap per kilowatt.
But the real advantage being overlooked is the small foot print and land use compared to other forms power generation. A nuclear reactor is ideal for high density population areas, adding no pollution like fossil fuels and using a fraction of the land that renewables require. And there is room for overlap between renewables and nuclear as well, meaning days where wind or solar would produce more power than usual, its easy to scale back solar production to take advantage of cheaper power, and vice versa for times when renewables aren’t going to generate enough to meet demand nuclear can increase their output relatively quickly and effectively.
The future of nuclear is however one of the most important. We are eventually going to be spending humans to other planets, and having mature, efficient and compact forms of power generation with long lifetimes and minimal start up power from idle states is going to be important, solar gets less effective the further from the sun we get, you can’t stick a wind turbine on a space craft and expect good results, and you’re out of your mind if you want to burn fossil fuels in an oxygen limited environment.
Treating nuclear as more than a curiosity but rather as the genuine lifeline and corner stone of our futures and future generations is significantly more important than fossil fuel profits today and all their propaganda.
Extremely cheap per kilowatt? Every statistic out there that I’ve seen and that includes government funding, as well as construction and deconstruction costs, paints a different picture. Nuclear is only competitive with coal or the relatively underdeveloped solar thermal.
Emphasis mine, source: https://world-nuclear.org/information-library/economic-aspects/economics-of-nuclear-power
If you scroll down literally like. A paragraph past that you will see a very nice table showing the spread of nuclear costs. Some (including in the US, which is used for the EIA figures) are quite expensive, but others (notably South Korea) are very much cost-competitive or better than renewables. Also worth noting, the renewable estimates have spread themselves, and do not include overinstallation/storage required to behave as firm power.
Which is to say:
A - there certainly are quite a few places that nuclear doesn’t make sense, at least currently. Including the US
B - equally, there are a lot of places around the world where nuclear is competitive
C - we should perhaps look at why the US is so expensive relative to other countries; it’s not some law of nature, we can change it. And it’s probably not just because other countries under-regulate them (I’d buy that for some of the countries listed)
I specifically picked the statistic that claimed to have included the full cost of installing something new. Most other statistics only include prolonging the life of existing plants, thus ignoring the installation costs completely. You can just quote the paragraphs that prove your point the same way I have and then we can discuss further. Maybe I made a mistake, who knows.
Or you could… Actually read the entire source you linked? It’s a pretty good article and goes into a lot of detail on why LCOE estimates vary significantly between countries and depending on discount rate assumptions, so quoting one specific number is useful context but not the full story.
The problem isn’t whether the LCOE numbers you quote consider the capital costs - they do, and that’s correct - so do the ones in the table below it. It’s that those are average values taken from the USA, which has among the highest capital costs for installing new reactors in the world. At best that tells us that fusion isn’t cost competitive in the USA right now.
The real advantage of nuclear is it’s constant output of power compared to the variable output of solar and wind
The space based nukes paragraph is irrelevant. While I agree with the point thtat it may not only be useful for long term space habitation, it may be required, I don’t see what that has to do with earth based commercial power generation. They’re very different beasts with little overlap. That’s like saying you support corn based subsidies, because we’ll have to grow crops off world: true but not relevant.
deleted by creator