For OpenAI, o1 represents a step toward its broader goal of human-like artificial intelligence. More practically, it does a better job at writing code and solving multistep problems than previous models. But it’s also more expensive and slower to use than GPT-4o. OpenAI is calling this release of o1 a “preview” to emphasize how nascent it is.

The training behind o1 is fundamentally different from its predecessors, OpenAI’s research lead, Jerry Tworek, tells me, though the company is being vague about the exact details. He says o1 “has been trained using a completely new optimization algorithm and a new training dataset specifically tailored for it.”

OpenAI taught previous GPT models to mimic patterns from its training data. With o1, it trained the model to solve problems on its own using a technique known as reinforcement learning, which teaches the system through rewards and penalties. It then uses a “chain of thought” to process queries, similarly to how humans process problems by going through them step-by-step.

At the same time, o1 is not as capable as GPT-4o in a lot of areas. It doesn’t do as well on factual knowledge about the world. It also doesn’t have the ability to browse the web or process files and images. Still, the company believes it represents a brand-new class of capabilities. It was named o1 to indicate “resetting the counter back to 1.”

I think this is the most important part (emphasis mine):

As a result of this new training methodology, OpenAI says the model should be more accurate. “We have noticed that this model hallucinates less,” Tworek says. But the problem still persists. “We can’t say we solved hallucinations.”

  • BetaDoggo_@lemmy.world
    link
    fedilink
    English
    arrow-up
    29
    arrow-down
    5
    ·
    edit-2
    2 months ago

    All signs point to this being a finetune of gpt4o with additional chain of thought steps before the final answer. It has exactly the same pitfalls as the existing model (9.11>9.8 tokenization error, failing simple riddles, being unable to assert that the user is wrong, etc.). It’s still a transformer and it’s still next token prediction. They hide the thought steps to mask this fact and to prevent others from benefiting from all of the finetuning data they paid for.

    • Echo Dot@feddit.uk
      link
      fedilink
      English
      arrow-up
      1
      arrow-down
      1
      ·
      2 months ago

      They hide the thought steps to mask this fact and to prevent others from benefiting from all of the finetuning data they paid for.

      Well possibly but they also hide the chain of thought steps because as they point out in their article it needs to be able to think about things outside of what it’s normally allowed allowed to say which obviously means you can’t show the content. If you’re trying to come up with worst case scenarios for a situation you actually have to be able to think about those worst case scenarios