• 1 Post
  • 243 Comments
Joined 1 year ago
cake
Cake day: July 5th, 2023

help-circle
  • I wonder if someone could set up some form of tunneling through much more mundane traffic, perhaps even entirely over a legitimate encrypted service through a regular browser interface (like the browser interface for services like Discord or slack or MS Teams or FB Messenger or Zoom or Google Chat/Meet) where you can just literally chat with a bot you’ve set up, and instruct the bot to do things on its end, and then forward the results through file sending in that service. From the outside it should look like encrypted chat with a popular service over that https connection.






  • display - USB-C at work, HDMI (through USB-C dock) at home

    Obviously you can’t use an HDMI port that you don’t have, but I gotta ask: if you had one of the newer MBPs with built-in HDMI, would you be using that HDMI port? Because it sounds like you wouldn’t, and that you’d still rely on the USB-C dock to do everything.

    And that’s been my position this whole thread. I think that the MBP’s return of the HDMI port was greeted with lots of fanfare, but I don’t actually know anyone who switched back to HDMI.


  • Yeah, I’m not going to throw out perfectly good hardware just to unify cables somewhat.

    I was referring to the replacement of HDMI 2.0 stuff with 2.1 stuff - not seeing an advantage to choosing HDMI 2.1 over Thunderbolt. And then there’s the support hell of intermingled HDMI 2.0 and 2.1 stuff, including cables and ports and dongles and adapters.

    Either way, I’m still stuck on the idea of direct HDMI use as being so ubiquitous that it warrants being built into a non-gaming laptop that already has Thunderbolt and DP (and USB-PD) support through the preexisting USB-C ports.

    Thunderbolt only works for workstations if the monitor supports it

    Even if driving multiple monitors over HDMI or DVI or DP or VGA or whatever, the dock that actually connects directly to the laptop is best served with Thunderbolt over USB-C, since we’d expect the monitors and docking station (and power cords and an external keyboard/mouse and maybe even ethernet) to all remain stationary. That particular link in the chain is better served as a single Thunderbolt connection, rather than hooking up multiple cables representing display signal data, other signal data, and power. And this tech is older than HDMI 2.1!

    So I’m not seeing that type of HDMI use as a significant percentage of users, enough to justify including on literally every 14" or 16" Macbook Pro with their integrated GPUs. At least not in workplaces.


  • You use HDMI for all those use cases? Seems like Thunderbolt is a much better dock for workstations, and DisplayPort is generally better for computer monitors and the resolution/refresh rates useful for that kind of work. The broad support of cables and HDMI displays is for HDMI 2.0, which caps at 4k60. By the time HDMI 2.1 hit the market, Thunderbolt and DisplayPort Alt mode had been out for a few years, so it would’ve made more sense to just upgrade to Thunderbolt rather than getting an all new HDMI lineup.



  • Now, I don’t know if it’s in USBC cables

    It’s not. Apple specifically follows the USB-PD standard, and went a long way in getting all the other competing standards (Qualcomm’s Quick Charge, Samsung Adaptive Fast Charge) to become compatible with USB-PD. Now, pretty much every USB-C to USB-C cable supports USB-PD.

    Also a shout out to Google Engineer Benson Leung who went on a spree of testing cables and wall adapters for compliance with standards after a charger set his tablet on fire. The work he did between 2016-2018 went a long way in getting bad cables taken off the market.





  • The problem is that there are too many separate dimensions to define the tiers.

    In terms of data signaling speed and latency, you have the basic generations of USB 1.x, 2.0, 3.x, and 4, with Thunderbolt 3 essentially being the same thing as USB4, and Thunderbolt 4 adding on some more minimum requirements.

    On top of that, you have USB-PD, which is its own standard for power delivery, including how the devices conduct handshakes over a certified cable.

    And then you have the standards for not just raw data speed, but also what other modes are supported, for information to be seamlessly tunneled through the cable and connection in a mode that carries signals other than the data signal spec for USB. Most famously, there’s the DisplayPort Alt Mode for driving display data over a USB-C connection with a DP-compatible monitor. But there’s also an analog audio mode so that the cable and port passes along analog data to or from microphones or speakers.

    Each type of cable, too, carries different physical requirements, which also causes a challenge on how long the cable can be and still work properly. That’s why a lot of the cables that support the latest and greatest data and power standards tend to be short. A longer cable might be useful, but could come at the sacrifice of not supporting certain types of functions. I personally have a long cable that supports USB-PD but can’t carry thunderbolt data speeds or certain types of signals, but I like it because it’s good for plugging in a charger when I’m not that close to an outlet. But I also know it’s not a good cable for connecting my external SSD, which would be bottlenecked at USB 2.0 speeds.

    So the tiers themselves aren’t going to be well defined.


  • Everything defined in the Thunderbolt 3 spec was incorporated into the USB 4 spec, so Thunderbolt 3 and USB 4 should be basically identical. In reality the two standards are enforced by different certification bodies, so some hardware manufacturers can’t really market their compliance with one or the other standard until they get that certification. Framework’s laptops dealt with that for a while, where they represented that their ports supported certain specs that were basically identical to the USB 4 spec or even the Thunderbolt 4 spec, but couldn’t say so until after units had already been shipping.



  • Apple does two things that are very expensive:

    1. They use a huge physical area of silicon for their high performance chips. The “Pro” line of M chips have a die size of around 280 square mm, the “Max” line is about 500 square mm, and the “Ultra” line is possibly more than 1000 square mm. This is incredibly expensive to manufacture and package.
    2. They pay top dollar to get the exclusive rights to TSMC’s new nodes. They lock up the first year or so of TSMC’s manufacturing capacity at any given node, at which point there is enough capacity to accommodate other designs from other TSMC clients (AMD, NVIDIA, Qualcomm, etc.). That means you can just go out and buy an Apple device made from TSMC’s latest node before AMD or Qualcomm have even announced the lines that will be using those nodes.

    Those are business decisions that others simply can’t afford to follow.




  • You say that it is sorted in the order of most significants, so for a date it is more significant if it happend 1024, 2024 or 9024?

    Most significant to least significant digit has a strict mathematical definition, that you don’t seem to be following, and applies to all numbers, not just numerical representations of dates.

    And most importantly, the YYYY-MM-DD format is extensible into hh:mm:as too, within the same schema, out to the level of precision appropriate for the context. I can identify a specific year when the month doesn’t matter, a specific month when the day doesn’t matter, a specific day when the hour doesn’t matter, and on down to minutes, seconds, and decimal portions of seconds to whatever precision I’d like.