• EnderWiggin@lemmy.world
    link
    fedilink
    English
    arrow-up
    8
    arrow-down
    2
    ·
    2 days ago

    That’s not at all what MIT is talking about here. This goes into detail around the challenges tied in rolling out grid scale solar in a way that aligns with supply and demand curves, and how to make sure we’re able to capture overproduction so that we can use it when not enough is being produced. It’s a complex shift to work out in our over 100+ year grid production structure, and has been an ongoing discussion across the energy sector. But you know…memes and shit.

    • Snowclone@lemmy.world
      link
      fedilink
      English
      arrow-up
      3
      arrow-down
      3
      ·
      2 days ago

      You’re not saying anything contradictory to the criticism, You’re saying the exact same shit with a more expensive vocabulary. I’m also very educated. I also agree the sun is Monty Burns greatest enemy for giving out free light.

      • EnderWiggin@lemmy.world
        link
        fedilink
        English
        arrow-up
        5
        ·
        edit-2
        2 days ago

        Clearly not. The point is that grid scale deployment is not easy. It’s an important discussion to do it right. The criticism is genuinely stupid and just spotlights people who clearly don’t understand how any of this stuff works or what the article is even talking about. You can’t just slap solar panels everywhere and call it a day.

        Grid scale redundancies are important. Managing load is important. Energy storage is important. Scaling up renewables and scaling down conventional generation is important. Ensuring those who cannot afford their own BTM generation can access affordable electricity is important. That’s entirely what this conversation is about.

  • Kazumara@discuss.tchncs.de
    link
    fedilink
    English
    arrow-up
    23
    ·
    2 days ago

    The real issue isn’t the overproduction per se, but that we (globally speaking) don’t have enough cheap scalable responsive distributed storage. I’m writing this from a privileged position since Switzerland has loads of dams and can pump water during such peaks. But it’s clear that’s not the solution everywhere. I hope a good cheap mass producible battery tech with less rare earth metal requirements comes along soon.

    • olympicyes@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      ·
      2 days ago

      Looks like the US has one in Tennessee, place called Raccoon Mountain, in the 1970s. At the time, the power source was to be nuclear. Another large scale project is being built near Seattle, with enough stored energy for 12 hours of electricity for every residence in Seattle. Pretty cool that such a conceptually simple technology can solve these problems.

    • Donkter@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      ·
      2 days ago

      I applied to a company called Form Energy with a really interesting solution. They use the cheap simple ingredients of iron and water to rust and de-rust iron to store and release energy. It’s less efficient than lithium-ion batteries but the cost is low and scalability is enormous. If it can make it past all of the hurdles and regulations it could be the solution to the energy storage problem for wind and solar.

  • KillingTimeItself@lemmy.dbzer0.com
    link
    fedilink
    English
    arrow-up
    14
    arrow-down
    4
    ·
    2 days ago

    of course it’s a furry shitposting about it.

    They aren’t wrong though, storage technology is only starting to come to market in significant enough capacity to be beneficial.

    And for storage plants to be financially viable energy costs during the day need to be really cheap, so they can raise them at night and make a significant enough profit to break even.

    • rockerface 🇺🇦@lemm.ee
      link
      fedilink
      English
      arrow-up
      9
      ·
      2 days ago

      Solar generation is kinda saving our asses here in Ukraine though, and was even more in the summer. So I guess all you need for solar to be viable is to have most of your other power sources to get bombed

      • KillingTimeItself@lemmy.dbzer0.com
        link
        fedilink
        English
        arrow-up
        2
        ·
        1 day ago

        this is actually something that still fascinates me. The fact that i can just buy a market accessible product, point it towards the sun, and i just get electricity is fucking insane to me.

        We truly live in the best timeline.

    • UrPartnerInCrime@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      3
      arrow-down
      1
      ·
      2 days ago

      2 giant lakes. 1 uphill from the other, or one underground. When there’s excess energy you pump water uphill. When you need more you let it back down

      • KillingTimeItself@lemmy.dbzer0.com
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 day ago

        yeah, good luck with that one though. it tends to be ecologically problematic, and very, very hard to find places good for this. It has happened, but you can’t just build these things as demand desires.

        This is why battery based and thermal based energy storage is taking quite the aggressive focus on research and development right now. Batteries are more of a side effect, and very easily accessible, and thermal storage is probably a lot less popular than it should be.

        Generally you can do a similar thing with traditional hydro anyway, plus it produces a base level of power anyway.

        • UrPartnerInCrime@sh.itjust.works
          link
          fedilink
          English
          arrow-up
          1
          ·
          22 hours ago

          You’re telling me we can’t dig big holes and use them? What about using old mines and quarries?

          Is it a problem that they can’t find anything, or just that it would be a bit expensive and they would rather use batteries as an excuse to keep using oil?

          • KillingTimeItself@lemmy.dbzer0.com
            link
            fedilink
            English
            arrow-up
            1
            ·
            16 hours ago

            you could, theoretically. You cold also create man made natural lakes in places where it’s convenient, but again, you need the rough shape of a lake high up, and the rough shape of a lake near enough, and lower to the other lake, that you can generate significant amounts of power.

            You might be able to use an old quarry, most old quarries are flooded anyway, but idk of many quarries that exist near the base of a mountain with the ability to have a higher elevation storage pond. Most quarries are probably going to be pretty close to ground on account of being a quarry, so that doesn’t really help much. You could also use a mine, but the problem there is going to be getting water out of it trivially. It’s just not really conducive to that use case.

            Another big problem is going to be pollution to the water supply, especially in something like a quarry or mine. That’s a non improbable issue.

            Ok so TL;DR here, is that you need an incredibly rare formation of geological features, and the ability to use them. If you’ve ever played minecraft you can think of it like finding a 3x3 formation of bedrock on the top layer of bedrock in the overworld. If not you can think of it like staring at a TV displaying static waiting for it to suddenly emerge an image that isn’t just indecipherable noise. Or better yet, the monkey on a type writer example, given enough time, it will produce the entire works of shakespeare.

            It’s theoretically possible, but practically, when possible, it’s probably already been done, and if it hasn’t there’s probably a good reason for it.

            If you’re analyzing this from a mathematical perspective, the problem here is not finding two lakes, or finding two lakes at different elevation levels, it’s finding two lakes, at different elevation levels, sufficiently close enough to be practically uesful for pumped hydro.

            The reason why we’re using batteries right now, as i’ve said is partially two fold, it’s a lot simpler, you can invest the majority of your capital into an energy storage medium, the remainder is for infrastructure, land, buildings, power equipment, which makes it a very low risk investment. The second primary reason is simply accessibility. Chemical batteries are simply the most prevalent, cheapest, and most accessible form of energy storage right now. They work anywhere, they can be built to any scale, they work no matter what time of day it is, or what time of year it is. They literally just work.

            If you’re trying to do something like pumped hydro you’re going to need a massive, multi billion, possibly hundreds of billions of dollars of capital, probably close to about a decade of construction, and only then after the construction can you start it up and start to generate power.

            With a battery storage system, once it’s built and approved for use, it can immediately start providing power storage. And for the cost of a few million, to a few hundred million. And again it scales basically infinitely.

            There are also a few other problems, Digging a big hole and filling it with water while it sounds simple is more challenging than it would seem. You need a geologically suitable area for it, and at this point you’re probably going to be flooding a dammed mountainous area anyway, so it’s probably redundant. There are earth fill embankment dams, however they have issues with subsidence for example, and that tends to be rather spooky. You would experience a similar issue here, the only difference is that it’s below ground, instead of above. What do you do with the removed material? What do you do if you’re in an area with a lot of bedrock? You’ve basically just created a quarry now.

      • Corkyskog@sh.itjust.works
        link
        fedilink
        English
        arrow-up
        1
        ·
        2 days ago

        How efficient is making hydrogen? If you don’t need a huge facility, it might be easier to just store it that way, so you don’t need giant lakes everywhere.

        • KillingTimeItself@lemmy.dbzer0.com
          link
          fedilink
          English
          arrow-up
          1
          ·
          1 day ago

          ok so funny problem, storing hydrogen is currently the next nobel prize. And uh, generating it while theoretically easy, is very power hungry. (less of a problem here though tbf with cheap solar power)

          Also producing power from hydrogen is more complicated than you would think. You could do a hydrogen fuel cell, or possibly burn it directly, but since hydrogen tends to sort be very spicy, it’s a little hard sometimes.

        • Tayb@lemmy.world
          link
          fedilink
          English
          arrow-up
          2
          ·
          2 days ago

          Less efficient than pumped hydro. Appears to be about 40% for green hydrogen in the round trip vs 80% for pumped hydro with a quick google search.

          • Corkyskog@sh.itjust.works
            link
            fedilink
            English
            arrow-up
            1
            ·
            2 days ago

            I am curious what’s involved in the “round trip”? Do you mean to fuel other machines directly with hydrogen?

            • KillingTimeItself@lemmy.dbzer0.com
              link
              fedilink
              English
              arrow-up
              1
              ·
              1 day ago

              directly storing electricity as a chemical battery system is likely going to be more efficient (way more optimized and generally a lot simpler) and something like thermal energy storage (really, really simple, and very, very effective, plus pretty cheap, there just isn’t much accessible tech out there at the moment, though it suffers from the same conversion problem, it’s certainly a lot simpler than hydrogen.)

            • Tayb@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              2 days ago

              Energy to hydrogen back to energy, so electrolysis to a hydrogen fuel cell. I think burning hydrogen directly is even less efficient.

  • Tudsamfa@lemmy.world
    link
    fedilink
    English
    arrow-up
    15
    arrow-down
    1
    ·
    2 days ago

    Before commenting, you should know there are 2 types of solar panels:

    • the ones owned by people (which may or may not feed into the grid)
    • the ones owned by corporations

    The article is probably about the 2nd kind (if you can only sell energy when there is a surplus, your company will fail), while the twitter user makes it seem like the 1st kind was meant. We probably need to built more of both types. Identify what type the other commenters are talking about before getting in any arguments here.

    • Enekk@lemmy.world
      link
      fedilink
      English
      arrow-up
      4
      ·
      2 days ago

      You have also made a good argument for socialized energy production. Any time you run into these situations where the optimal solution for a good society requires and is anti-profit, that’s a good place for socialized ownership.

    • johannesvanderwhales@lemmy.world
      link
      fedilink
      English
      arrow-up
      3
      arrow-down
      1
      ·
      edit-2
      2 days ago

      It would be nice if anyone linked the actual article instead of just guessing based off of a screenshot.

      Edit: This is the actual Twitter thread… and this is the article referenced. They’re saying that since solar plants all generally generate electricity at the same time, high enough solar adoption would mean prices would been driven down during those hours, which lowers the appeal of creating new solar panels over time. Which has implications for clean energy goals.

  • B16_BR0TH3R@lemmy.world
    link
    fedilink
    English
    arrow-up
    75
    arrow-down
    14
    ·
    edit-2
    3 days ago

    This is idiotic. The fact is your electricity transmission system operator has to pay a lot of money to keep the grid stable at 50 or 60Hz or your electronics would fry. With wind and especially with solar power, the variable output is always pushing the frequency one way or the other, and that creates a great need for costly balancing services. Negative pricing is an example of such a balancing service. Sounds good, but for how long do you think your electricity company can keep on paying you to consume power?

    • imgcat@lemmy.ml
      link
      fedilink
      English
      arrow-up
      1
      ·
      1 day ago

      pay a lot of money to keep the grid stable at 50 or 60Hz or your electronics would fry

      Absolutely not. Please don’t make things up.

    • thesporkeffect@lemmy.world
      link
      fedilink
      English
      arrow-up
      2
      ·
      2 days ago

      You’re answering the wrong questions. I don’t think people are assuming that it’s simple to manage the power grid (if so, they shouldn’t be…) but rather why are we locked into a system that lets business profit motive be responsible for the continued existence of the ecosystem.

    • Kimano@lemmy.world
      link
      fedilink
      English
      arrow-up
      21
      arrow-down
      3
      ·
      3 days ago

      People also don’t realize that too much power is just as bad as too little, worse in fact. There’s always useful power sinks: pumped hydro, batteries, thermal storage, but these are not infinite.

      • Aeri@lemmy.world
        link
        fedilink
        English
        arrow-up
        7
        arrow-down
        1
        ·
        3 days ago

        Stupid question but can we not like, make toggleable solar panels? Like if I Just pull the plug extracting power from a solar panel does it explode or break or something?

        • Cryophilia@lemmy.world
          link
          fedilink
          English
          arrow-up
          5
          arrow-down
          11
          ·
          edit-2
          2 days ago

          Not really. You can discharge into the ground, but for large installations even the ground has a limited (local) capacity.

          Edit: explain yourselves, downvoting cowards

          • T156@lemmy.world
            link
            fedilink
            English
            arrow-up
            3
            ·
            2 days ago

            Could they not just break the circuit for the panel, and stop it feeding back into the mains?

            • Cryophilia@lemmy.world
              link
              fedilink
              English
              arrow-up
              4
              ·
              2 days ago

              Yeah. My understanding is that most large solar complexes don’t have this capability, at least not in any efficient automatic way, but most home solar systems do.

            • Cryophilia@lemmy.world
              link
              fedilink
              English
              arrow-up
              5
              arrow-down
              1
              ·
              2 days ago

              My understanding is that most large solar arrays don’t have this capability in any sort of automatic way, and at these levels of power it’s a bit more complicated than “just unplug it”.

                • Cryophilia@lemmy.world
                  link
                  fedilink
                  English
                  arrow-up
                  3
                  ·
                  2 days ago

                  One of many issues caused by the assumption that solar would only ever be a minor part of the grid.

              • uis@lemm.ee
                link
                fedilink
                English
                arrow-up
                2
                arrow-down
                2
                ·
                2 days ago

                most large solar arrays don’t have this capability in any sort of automatic way

                Look at this “manual” unplugger:

                and at these levels of power it’s a bit more complicated than “just unplug it”.

                Unplug many.

                • Cryophilia@lemmy.world
                  link
                  fedilink
                  English
                  arrow-up
                  4
                  arrow-down
                  1
                  ·
                  2 days ago

                  “Everything is so fucking simple that I can easily figure out the solutions to giant societal problems with 15 minutes of googling” is the dumbest take I’ve heard all day. Granted it’s only 6am but still.

                  Maybe you’re not fucking Sun Tzu, Einstein and Jesus rolled in to one and there might be the occasional issue that’s slightly more complicated than your armchair quarterback solutions.

                  Christ you people piss me off.

          • sep@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            arrow-down
            1
            ·
            2 days ago

            I have no idea what i am talking about… But what would happen if you pulled a black tarp over the panel? Could even be automatic like the blends on a building. And even partial.

              • Disgracefulone@discuss.online
                link
                fedilink
                English
                arrow-up
                1
                ·
                edit-2
                2 days ago

                You’re telling me a toggleable panel that flips when it needs to is too expensive? You’re already installing the panels. You’re already doing all that. The only difference is the material on the back side of the panel and of course some sort of crank and shaft to rotate it.

                Or if only there was some sort of powered component that could rotate it when it reached the capacity you know since the name of the game is power

                • Allero@lemmy.today
                  link
                  fedilink
                  English
                  arrow-up
                  7
                  ·
                  edit-2
                  2 days ago

                  Solar panels are very cheap, and any modification, even just a moving cover, greatly ramps up prices. No, really.

                  We just need a lot of panels to generate significant amounts of electricity, which would necessitate a large cover or a lot of mechanisms - which would get expensive on that scale.

                • Cryophilia@lemmy.world
                  link
                  fedilink
                  English
                  arrow-up
                  5
                  arrow-down
                  1
                  ·
                  2 days ago

                  In addition to what allero said, you seem to only be considering future installations rather than existing ones. Retrofitting existing equipment is massively more expensive than changing a design prior to building it.

      • uis@lemm.ee
        link
        fedilink
        English
        arrow-up
        3
        arrow-down
        1
        ·
        2 days ago

        Solar panels are easily disconnectable. Unlike conventional power plants it does not have spinning rust, that can walk away entire building.

    • booly@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      4
      arrow-down
      2
      ·
      2 days ago

      This whole thread has way too many people who see the price as some kind of made up number that dictates how people behave, rather than recognizing that the price is a signal about the availability of useful real-world resources.

      Even if the prices were strictly mandated by a centrally planned tariff that kept the same price throughout the day, every day, we’d still have the engineering challenge of how to match the energy fed into the grid versus taken out of the grid.

      The prices are just a reflection of that technical issue, so solving it still needs to be done.

    • uis@lemm.ee
      link
      fedilink
      English
      arrow-up
      3
      ·
      2 days ago

      Just have few percent of spare capacity. If suddenly it will become too sunny, you can just disconnect solar cells. If not sunny enough, then connect them back.

      Obviously I’m talking only about day - the only time when solar panel output can fluctuate.

    • Blackmist@feddit.uk
      link
      fedilink
      English
      arrow-up
      5
      arrow-down
      1
      ·
      2 days ago

      Sure, but for all the times my electricity goes negative for half an hour, the monthly bill indicates that is vastly outweighed by all the times that it isn’t.

    • tweeks@feddit.nl
      link
      fedilink
      English
      arrow-up
      5
      arrow-down
      1
      ·
      3 days ago

      Why isn’t this as easy as storing some of that excess energy in a home battery and letting the rest down in a wire into the ground? Then if it’s smart enough it could only give back energy when needed.

      • untorquer@lemmy.world
        link
        fedilink
        English
        arrow-up
        8
        ·
        3 days ago

        The easiest solution is to send the power somewhere else where it can offset the use of fossil fuels. This solution is fraught with political hurdles, subject to market forces (due to privatization) and often grid compatability issues(looking at you Texas). It is, however, a time tested and common method for mitigating excess production.

      • B16_BR0TH3R@lemmy.world
        link
        fedilink
        English
        arrow-up
        5
        ·
        edit-2
        3 days ago

        Well, that’s what they’re doing some places. The batteries assets are not in private homes usually though, they’re by themself or run by power-consuming industries. Batteries are expensive though, and they degrade quickly if you use them wrong. In the EU, ENTSO-E defines the market rules, trade systems and messaging systems that energy companies and asset owners play by. Sometimes the revenue-generating asset is a battery, sometimes it’s a hot water boiler, wind park, factory, hydro plant etc.

    • EmperorHenry@discuss.tchncs.de
      link
      fedilink
      English
      arrow-up
      4
      arrow-down
      5
      ·
      3 days ago

      With wind and especially with solar power, the variable output is always pushing the frequency one way or the other, and that creates a great need for costly balancing services.

      Speaking as a flashlight enthusiast…there’s many different ways to get a constant and consistent current. Sure we’d need to scale it up from a pocket-sized device to a whole fucking power grid, but with a big enough driver with the right arrangement of capacitors and all that, you’d easily be able to get a totally consistent current out of wind or solar

      • untorquer@lemmy.world
        link
        fedilink
        English
        arrow-up
        8
        ·
        3 days ago

        Having knowledge in power electronics i can confidently say the DC output of solar is easily and regularly inverted in phase with grid. In fact, DC is often used for undersea cables switching AC to dc then back to AC, All at extremely high voltage and varying demand(up yo 600kV/600MW but varying by installation).

        Wind turbines go online after the blades start spinning and connect to the grid in the same way as any other generator, controlled by internal electronics. Power is regulated through blade feathering and can be turned off as supply exceeds demand. This, other than for maintenance reasons, is why you might see one turbine spinning while the next is standing still. This capability actually means the grid is MORE stable with wind power.

        Any further fluctuation is managed in the same way as conventional power generation.

        • A7thStone@lemmy.world
          link
          fedilink
          English
          arrow-up
          5
          arrow-down
          7
          ·
          3 days ago

          To start the frequency of the electricity isn’t the issue. Second all modern electronics use switching power supplies which don’t care about frequency. That’s two incorrect things just in the second sentence that they literally said was fact.

          • NιƙƙιDιɱҽʂ@lemmy.world
            link
            fedilink
            English
            arrow-up
            9
            arrow-down
            1
            ·
            edit-2
            3 days ago

            I’m pretty sure that “your electronics” in this context is most likely referring to the grid operator’s electronics, not individual personal devices. In that case, frequency is extremely important- if you like grid stability and dislike blackouts, that is. 😅

            • A7thStone@lemmy.world
              link
              fedilink
              English
              arrow-up
              3
              arrow-down
              6
              ·
              2 days ago

              That’s a ridiculous way to define “your electronics”. The original commenter was trying to fear monger with incorrect information, and you are jumping to protect them. I didn’t realise the grid owners had astroturfers in the fediverse.

              • TheOakTree@lemm.ee
                link
                fedilink
                English
                arrow-up
                6
                ·
                edit-2
                2 days ago

                I read it more as “your personal electronics won’t enjoy the brownouts and blackouts from having shitty frequency stability on the grid” more so than “your personal electronics will directly suffer from frequency instability,” but maybe I read it with subtext because I’m literally studying power systems right now.

                • A7thStone@lemmy.world
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  arrow-down
                  2
                  ·
                  edit-2
                  2 days ago

                  I’m primed to correct FUD. If that means I’m not OK so be it. Love the textbook ad hominem by the way. That’s a classic that never goes out of style.

  • bitjunkie@lemmy.world
    link
    fedilink
    English
    arrow-up
    73
    arrow-down
    8
    ·
    3 days ago

    Literal free goddamn energy from the sky and these greedy fucks are going to burn the world down because they can’t flip it for a buck

    • scutiger@lemmy.world
      link
      fedilink
      English
      arrow-up
      30
      arrow-down
      8
      ·
      3 days ago

      It sounds dumb, but because you can’t turn off solar power, if it produces more then you need, you have to use it somehow or it can damage equipment. Hence the driving prices into negative territory. It’s a technical problem more than it is a financial one.

      • calcopiritus@lemmy.world
        link
        fedilink
        English
        arrow-up
        34
        arrow-down
        7
        ·
        3 days ago

        It is a financial problem. Technically you can just cover the solar panels. But that’s not good financially.

        • mohammed_alibi@lemmy.world
          link
          fedilink
          English
          arrow-up
          18
          arrow-down
          2
          ·
          edit-2
          3 days ago

          Your “technically you can” is actually a huge logistical nightmare to implement.

          Having electricity rates go really low is intended to incentivize people or companies to sink the excess energy to wherever they can. And also to discourage producers to produce more at that hour, if they are able to.

          • calcopiritus@lemmy.world
            link
            fedilink
            English
            arrow-up
            9
            ·
            edit-2
            3 days ago

            Logistical problems are still financial problems though. That’s my point. Hire enough people/develop the appropriate automation and the issue is no more.

            We have the technology to solve this, the problem is the money.

            In fact, you could just buy enough batteries and the problem will also go away. Still a financial problem, not a technology one.

            EDIT: just to clarify, if at some point energy prices go negative, it means that it is cheaper to buy energy usage than a solution. Unless the energy company is dumb enough to just lose money for the lazyness of considering other options.

            • mohammed_alibi@lemmy.world
              link
              fedilink
              English
              arrow-up
              6
              ·
              3 days ago

              You could spend the money, but you also need to consider whether that money is well spent. Batteries do not last forever. Maybe that money is better spent on R&D to develop better batteries first. Also natural resources and environmental impact needs to be considered. Batteries take natural resources to build and also occupies a lot of space.

              20 years ago, we also have the technology to run AI workloads. Except we probably had to deploy billions of CPUs to match the capability of today’s GPUs. We have the technology then, but it is not practical. And that money was much better spent in the R&D that lead to today’s GPUs. So similarly our batteries probably needs to be a few magnitude better than what we have today before it is practical to use.

          • zalgotext@sh.itjust.works
            link
            fedilink
            English
            arrow-up
            6
            arrow-down
            1
            ·
            3 days ago

            Really? I’m seriously asking, because I thought solar farms already had automated ways of cleaning off the panels, surely an automated way to cover the panels wouldn’t be any more complex than that. It would add maintenance costs for sure, but calling it a logistical nightmare seems like an exaggeration.

            • badcommandorfilename@lemmy.world
              link
              fedilink
              English
              arrow-up
              6
              arrow-down
              1
              ·
              edit-2
              3 days ago

              Most use a horizontal single axis configuration and could just tilt the panels away from the sun.

              The real question that we should be asking, is why nobody can think of what to do with free energy?

              Desalination? Mine Bitcoin? Giant space laser?

              • WoodScientist@lemmy.world
                link
                fedilink
                English
                arrow-up
                1
                ·
                edit-2
                2 days ago

                Or in a pinch: just run big-ass space heaters. Seriously. It’s a stupid way to burn off excess power, but it’s dirt simple and cheap. Just have a big array of resistive heaters out in an empty field somewhere with a high fence around it. Need to burn off an extra GW? Run it through massive heating elements and burn burn it off. It’s a stupid waste of good energy, but as an emergency backup, it’s not a bad option. It’s trivially easy to dispose of huge amounts of excess electricity if you just run the mother-of-all space heaters. Run your stupid giant resistive heater at the bottom of a lake for even better effect.

              • Cryophilia@lemmy.world
                link
                fedilink
                English
                arrow-up
                2
                ·
                3 days ago

                It’s not a question of ideas, it’s a question of money. Building things to use excess power costs a lot of money.

            • mohammed_alibi@lemmy.world
              link
              fedilink
              English
              arrow-up
              4
              ·
              3 days ago

              You need to consider more than just solar farms. There are many roof top solar systems on people’s houses. That’s what I’m referring to regarding logistical nightmare.

              Second, if we are just going to cover up solar panels, then it really defeats the purpose of having it. A better way is to come up with ways to store this excess energy to use when there is low production and not have to depend on fossil fuels at night.

              • zalgotext@sh.itjust.works
                link
                fedilink
                English
                arrow-up
                2
                ·
                edit-2
                3 days ago

                Yeah I understand storing and using the energy is obviously a better solution than to stop producing the energy. But in the short term, in the context of large solar arrays, until we have storage solutions or ways to use* the excess, covering the panels up or turning them to face the ground for a bit doesn’t seem like a very big logisticical hurdle.

                There are many roof top solar systems on people’s houses. That’s what I’m referring to regarding logistical nightmare.

                Are there really enough residential rooftop panels for this to even be a problem? And couldn’t it be solved just by installing a battery for your home to store the excess? Again, if you could explain how this would be a logistical nightmare for my ignorant self, I’d appreciate it.

        • qjkxbmwvz@startrek.website
          link
          fedilink
          English
          arrow-up
          4
          ·
          3 days ago

          Afaik photovoltaics are fine running open circuit, i.e., disconnecting them. Thermal solar, and wind, are (I think) much trickier (but covering things for solar thermal, like you suggest, is perhaps feasible).

      • puppy@lemmy.world
        link
        fedilink
        English
        arrow-up
        17
        arrow-down
        10
        ·
        edit-2
        3 days ago

        “Damaging equipment” is just nonsense. I’ve got an off-grid solar system. When the battery is fully charged the solar panels simply stops producing. It has potential (voltage) but no current until you draw power. Just like a battery is full of energy but it just sits there until you draw power from it.

        All solar systems could have smart switches to intelligently disconnect from the grid as needed, some inverter already do this automatically. So it’s not a technical problem. It’s a political problem.

        • gaiussabinus@lemmy.world
          link
          fedilink
          English
          arrow-up
          14
          arrow-down
          2
          ·
          3 days ago

          This can cause degradation of the PN junction on the panel shortening life. The plans I’ve seen all have a resistive heater some place to dump the excess when full. Smart equipment does help mitigate most issues like moving the resistance point on the panel for lower efficiency when signaled to do so but less is not the same as none.

          • speeding_slug@feddit.nl
            link
            fedilink
            English
            arrow-up
            1
            ·
            3 days ago

            How does it damage the PN junction of the panel is open circuit or barely loaded? It doesn’t seem logical that this would damage the panel, but I’m open to being proven wrong.

            There are all kinds of follow up questions to ask as well, but I think the main one is how big an effect are we talking?

            • gaiussabinus@lemmy.world
              link
              fedilink
              English
              arrow-up
              4
              ·
              3 days ago

              Not a huge effect now with smart systems but if you leave solar panel disconnected from everything and out in the sun for weeks at a time you will damage the panel. Open circuit voltage is higher than operating voltage and higher voltage will break down insulation. PN depends on the insulating properties of a doped layer. If I remember correctly electron tunneling causes damage by making the band gap smaller

      • PresidentCamacho@lemm.ee
        link
        fedilink
        English
        arrow-up
        6
        arrow-down
        1
        ·
        3 days ago

        It is a technical problem of how can you convince electrical companies to overcome a problem they have no financial incentive to solve.

        • dubious@lemmy.world
          link
          fedilink
          English
          arrow-up
          2
          arrow-down
          4
          ·
          3 days ago

          that’s not a technical problem. that’s a weakness of the people’s resolve problem. we can, at any time, force them to do the right thing.

          • PresidentCamacho@lemm.ee
            link
            fedilink
            English
            arrow-up
            3
            ·
            3 days ago

            I’m aware its not a technical problem, I was using the word ironically to point out the person I was responding to was wrong to say it…

            Also saying we can at any time fix a problem is just being ignorant of the many near impossible steps needed to fix the problem. In this case the problem is capitalism. We could come up with ways to end capitalism or make capitalism work in the interest of humanity, but will it realistically ever happen? No it wont, private money won, look at the topics discussed for presidential debate, never a mention of doing something about private capital owning Washington. Just super effective wedge issues.

            • Cryophilia@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              3 days ago

              You’re being too broad. We don’t need to undo all of capitalism here. Nationalising the electric grid is a reasonable solution to this particular problem.

              • PresidentCamacho@lemm.ee
                link
                fedilink
                English
                arrow-up
                1
                ·
                2 days ago

                What incentive does a politician have to support nationalizing the power grid? It wont be a super splashy issue to tackle so it isnt worth doing it for the credit, and the different power companies of the world will just put their money into buying opposition to your effort anyways.

                That’s the problem with capitalism is that any single thing you would want to do that would impact some cocksuckers capital, and the threat alone makes it a necessity to pay to win in congress. Usually the only way stuff like this happens is because there is new capital entering the market that can afford to donate against the old capital to overtake them. Its just rich assholes all the way down.

                • Cryophilia@lemmy.world
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  ·
                  2 days ago

                  If the government seizes control of a major industry, that’s a lot of power and opportunity for politicians. It’s already been done in some local areas, and it had the broad support of the people because “the electric company is gouging us, the gov should take it over” is an easy sell.

      • Zink@programming.dev
        link
        fedilink
        English
        arrow-up
        4
        ·
        3 days ago

        Sounds like energy companies or independent entities should invest in energy storage so they can get paid to draw from the grid.

        • qjkxbmwvz@startrek.website
          link
          fedilink
          English
          arrow-up
          5
          arrow-down
          1
          ·
          3 days ago

          No, unfortunately, you can’t.

          Ground doesn’t typically dissipate power, rather, power is dissipated in the circuit/load — so if you just hook a wire to ground, you’re dumping gobs of power into the wire. If you do this in your home (DON’T), best case it will trip the breaker, worst case it will melt and catch something on fire.

          It’s easy enough to burn a kilowatt — just boil some water. But it’s entirely something else to burn megawatt, or yikes, gigawatt scale power.

          • dual_sport_dork 🐧🗡️@lemmy.world
            link
            fedilink
            English
            arrow-up
            5
            ·
            3 days ago

            It seems braindead simple to me to work some controls into an industrial scale solar array to manage its output by regulating its input. Like, rotating the panels to put them out of their optimal alignment with the sun or mechanically partially covering them with shutters.

      • bamfic@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        arrow-down
        3
        ·
        3 days ago

        Didnt Nikola Tesla try to sell Westinghouse on providing free unmetered electricity to everyone on earth and got laughed out of the room?

    • dubious@lemmy.world
      link
      fedilink
      English
      arrow-up
      3
      ·
      3 days ago

      you know we could just put our collective foot down and take the power away from them.

  • arc@lemm.ee
    link
    fedilink
    English
    arrow-up
    85
    arrow-down
    2
    ·
    3 days ago

    If only there were some way to take energy made from sunshine and store it in some form for later. Like in a battery. Or as heat. Or in a flywheel. Or just use the energy for something we’d really like to do as cheaply as possible. Like sequester CO2. Or desalinate water. Or run industries that would otherwise use natural gas.

    • ayyy@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      15
      arrow-down
      3
      ·
      edit-2
      3 days ago

      Seriously if it was free for me to run a hot tub I would be a more relaxed person…but somehow these negative power prices never seem to trickle down to the consumer 🤔.

    • RangerJosie@lemmy.world
      link
      fedilink
      English
      arrow-up
      15
      arrow-down
      2
      ·
      3 days ago

      What is this “Battery” you speak of? The only Battery I know of is the Powder Battery on a warship.

    • uis@lemm.ee
      link
      fedilink
      English
      arrow-up
      1
      arrow-down
      1
      ·
      2 days ago

      Or as heat.

      We already have too much of that.

    • MystikIncarnate@lemmy.ca
      link
      fedilink
      English
      arrow-up
      5
      arrow-down
      6
      ·
      3 days ago

      This is what gets me. Relative efficiency of stuff is pretty much nullified when the energy used is free. Total power use still matters because it will determine the total size of the array of solar panels to generate the power needed.

      But this is near and dear to my heart. I like hydrogen as energy storage. If you burn it, you get water. Natural gas is just CH4, so the output of burning it is 1CO2 + 2H2O. But a lot of natural gas stuff can also use hydrogen with little modification, so we don’t have to upend entire industries to adapt. Machines can be updated to use the new fuel type with little expense and we’re not throwing out entire production lines to replace them with ones based on electricity.

      Why hydrogen? Simple, hydrolysis. Using power generated for free from the sun, you can split water into its base components. Hydrogen and oxygen. With some fancy knowledge, you can capture pretty much all of the hydrogen and none of the oxygen, and store it for use.

      It’s inefficient compared to some other technologies, in that it takes a lot of power compared to how much hydrogen/oxygen you get, but bluntly, if it’s coming from solar, who cares? Not like we’re paying for the power anyways.

      I keep thinking about this in the form of industry. Say a factory uses natural gas in boilers to make something hot. Whatever the material, whatever the reason, that’s what they’re doing. With little modification, the system can be adapted to hydrogen, and the company can build a hydrogen hydrolysis reactor on site using either city water, rain water, lake or river water… Even an underground well. The reactor runs all day and generates hydrogen, stored in a large, high pressure tank, also on site, then pipelines run it to the machines, boilers, whatever, to run the production lines. It’s free to run, and only requires a single capital investment.

      Hydrogen, also, can be stored indefinitely and not “lose charge” unlike other, battery-based storage systems (or heat, or flywheels). So hydrogen is ideal for long term energy storage. Fuel cells are still the most efficient way to convert hydrogen to electricity, and yeah, you lose a lot of potential energy in the electrolysis/fuel cell conversions, but the energy input is free in the first place, so who cares?

      I’m not saying we should go all in on hydrogen. I’m just saying that it’s worth continuing to develop the technology for it. Batteries, capacitors, storage via heat or flywheels, they all have their place in the energy future. At least until fusion makes them all obsolete (once we find a way to make that self fueling or use materials that are not extremely limited. IMO, we’re making good progress but we’re decades, if not centuries away from something practical, given our currently known planetary resources).

      And yes, battery EVs are a good thing. Hydrogen electric vehicles… Let’s just say “too soon”, and leave it at that. Batteries for daily charge/discharge for home use, absolutely. Larger scale heat/flywheel storage, absolutely. But longer term than days to months, hydrogen may be the better option. It’s certainly a good option for industry that currently relies almost exclusively on natural gas.

      • orangeboats@lemmy.world
        link
        fedilink
        English
        arrow-up
        12
        ·
        3 days ago

        Hydrogen is troublesome as an energy storage. The roundtrip efficiency (electricity -> hydrogen -> electricity) is just… very not worthwhile compared to batteries. Then beyond efficiency there is still the question of “how do we store hydrogen safely?”

        Storing energy indefinitely is not a problem for electricity storage, since we are pretty much guaranteed to use the stored energy up in a single day.

        • MystikIncarnate@lemmy.ca
          link
          fedilink
          English
          arrow-up
          3
          arrow-down
          1
          ·
          3 days ago

          Yep. When you’re using the energy quickly, within days or weeks, then hydrogen is extremely impractical.

          The merits of hydrogen are in long term storage and cycles. A well built storage tank can last a lifetime. To be fair, a poorly built one might not last a year… So it’s very dependent on the external factors involved.

          Batteries have their flaws, which I think we all know by now. Weight (regardless of state of charge), volume (energy density), charging speed, cycle life, etc.

          It’s all about the application. Is the energy storage method going to be efficient for the desired outcomes.

          Regardless of what other outcomes are in play, one that should be constant is to preserve the environment. Lithium technologies have reached a high level of development in recycling, so, for the most part, the environmental impact of end-of-life batteries is effectively mitigated to a large extent. This is a great thing that we have developed.

          We need to do the same with solar PV panels, and mitigate as much of the environmental impact as we can from that as well. I know that’s something that’s being worked on, but we’re not at the same level of efficiency as we are with batteries, probably due to the comparatively long life of PV panels, vs the comparatively short lifetime of lithium cells. We’ve simply had a lot more lithium to deal with and find ways to recycle, so far. I’m sure PV panels recycling will come along as more early adopters upgrade to something newer, and more panels get into the stage where they need to be recycled. I haven’t checked in on PV panel recycling in a while so I’m not sure how outdated my information is.

          To be clear, I am not, have not, and would never suggest that we move all our efforts into any technology, including, but not limited to, lithium, solar, wind, hydrogen, or anything else that’s been discussed. IMO, we need to leverage several technologies to achieve our long-term goal of global net zero, while meeting the energy demands of everyone.

          I just feel like hydrogen is treated like a dead end technology, and I can’t blame the public for thinking so. A lot of the information about it as an energy storage solution is either very old, or still in its infancy. From electrolysis, which is a very old idea, to hydrogen fuel cells, which are extremely new by comparison. IMO, there’s a lot of work that can be done here, and we need to keep looking into it. Maybe it goes nowhere, maybe it becomes so practical that other solutions seem like shit by comparison. I don’t think either of those is likely, we’ll probably land somewhere in the middle of those extremes. I don’t know, and I’m not a scientist, so I’m just hoping we, as a society of people, keep working on it.

          One thing I’m particularly excited for in this field is solid state batteries. But that’s also in its infancy. I know a lot of work is being done on them, so we’ll see what happens.

          My point, if I have any point at all, is that we need to keep researching varied technologies for it. While solid state might be the right answer for EVs, and cellphones and most consumer electronics, they might not be the best solution for other applications. We need answers to energy demands of all sorts and giving up on something like hydrogen when there’s still research to be done, isn’t a great idea. We don’t know what researching a technology could uncover. Maybe an air battery that’s hyper efficient and has a high energy density, better than solid state technologies could hope to achieve. Maybe a lot of things. We just don’t know.

          Let’s try everything and figure out what works for what application.

      • AliSaket@mander.xyz
        link
        fedilink
        English
        arrow-up
        4
        ·
        3 days ago

        I agree that H2 can have certain applications as a bridge technology in some industries, but there is a very important parameter missing in your premise.

        Even if solar power seems “free” at first glance it really isn’t. It needs infrastructure, e.g. Photovoltaic Panels and lots of it. So just having H2 instead of a battery for an application means, it needs thrice the PV capacity or even more and with it the grid capacity. Now add to that, we aren’t just talking about replacing electricity from fossil fuel plants by PV, but about primary energy as a whole, which makes the endeavor even more massive. Also H2 will not magically become much more energetically efficient in its production, transport, storage and usage, because there are physical limits. (Maybe with bacteria for production) The tech could and should get better concerning longevity of the electrodes for example. Also as the smallest molecule out there, storage will never be completely without losses. And long term storage requires even more energy and/or material.

        All this is to say, that efficiency is still paramount to future energy supply, since also the material is limited or just simply because of costs of infrastructure and its implications on the biosphere. Therefore such inefficient energy carriers as H2 or what people call “e-fuels” should be used only where the enormous power and/or energy density is critical. H2 cars should therefore never be a thing. H2 or e-fuel planes, construction machines or tractors on the other hand could be more appropriate uses.

        • MystikIncarnate@lemmy.ca
          link
          fedilink
          English
          arrow-up
          2
          ·
          3 days ago

          There’s certainly costs involved with solar. Even the act of cleaning the panels is going to increase maintenance costs. More panels to clean, more cost. More space needed for the panels, more cost. It might not be much per panel, but it’s still a cost. The wear of the panels is more cost, they only last so long before they degrade, and replacements are not free, so if the panels degrade without doing a lot of “work” (aka the outcome of having them) vs the cost of installing and maintaining them, was it worth it? These are all economic questions that also need to be considered.

          Yes, it’s not free, but it’s the closest thing to “free” power we have. Literally pennies for gigawatt hours of output. If that power isn’t consumed, then it wasn’t useful to produce. Whether that generated power goes into batteries, homes, or hydrogen production, that’s going to be something we have to solve for.

          I see a hydrogen reactor + fuel cell “generator” as a secondary storage system to batteries. When production is unusually high, push the power into hydrogen. It’s not nearly as efficient, but it can be stored for much longer without losing any. It can be stored far more densely than what can be accomplished by batteries. If the batteries are full and your PV plant is still pouring out unused watts, rather then let that energy go to waste, pushing it into hydrogen storage is a better option. If you don’t need it for 6 months, a year, two years? No big deal. When production is low and your batteries are almost out, just fire up the fuel cell and recharge from the excess energy you couldn’t put in the batteries. It’s inefficient, yes, but bluntly, it’s better than letting any of the excess production go to waste.

          There’s other competing technologies for the same purpose. I see hydrogen as the second stage of storage. It’s not as good as the first stage, but it’s better than turning to fossil fuels to generate power.

          I don’t know if that’s the right answer to the problem. I don’t know if it’s even a good idea. All I know is that it is possible. IMO, it’s not a bad idea.

          I’ve said it before and I’ll say it again: if I’m saying anything at all here, it’s that we need to keep researching everything. I don’t want anyone to drop research on another technology to dedicate to hydrogen, just as I wouldn’t want anyone to drop hydrogen to research something else. We need to keep looking into this stuff.

          There’s no single solution to our energy needs, as of right now. I don’t see one emerging in our lifetimes. The only goal I want to see pursued, if not obtained, is net zero for climate change. Stop the destruction of the environment, especially, but not limited to, our energy needs. Whatever gets us there, whether hydrogen, nuclear, fusion, solid state, flywheel, heat storage, thermoelectric, geothermal, hydroelectric, or whatever… I’m game. I feel like hydrogen still has a lot of discoveries that can be made, and I really don’t want to see it abandoned because of a lack of popularity in the consumer space. It’s there, it’s green, it’s got potential, let’s keep trying to get it to a place where it can be beneficial, just like with everything else in that market segment.

          • AliSaket@mander.xyz
            link
            fedilink
            English
            arrow-up
            1
            ·
            3 days ago

            It is not only economic cost though. As I’ve mentioned, materials are also limited (on the same level as: There isn’t enough copper to wire all motors needed to replace all cars today with EVs). And it needs alot of surface area compared to the concentrated power plants of the past, which means an even bigger impact on the biosphere (especially if not done on rooftops in cities but in mountain ranges or fields, etc.). Don’t get me wrong; solar energy, if done right, is the only source that doesn’t interfere with natural cycles and does not increase entropy of the planet (which makes it actually sustainable). Using it inefficiently though, means inefficient use of other resources which are limited. (Not only economic. But on that note: Public infrastructure is always built with costs in mind, because we shouldn’t waste tax money, so we can do a better and more comprehensive job with what we have.)

            So if there is a more efficient way to store energy for long periods, then it should take precedence over a very inefficient one. This will get complex since it is very much dependent on the local conditions such as sunshine, water sources and precipitation, landscape, temperatures, grid infrastructure and much more. As an engineer, I would throw in though, that if you need this secondary storage, that is not much cheaper, doesn’t have some very essential advantage, or doesn’t mitigate some specific risk, but is much more inefficient over your primary storage, then the system’s design is… sub-optimal to put it mildly.

            For the argument of exploring everything: We simply can’t. More precisely we could, but it would need much more time, money and resources to arrive at the goal. And since climate catastrophe is already upon us, we don’t have that time and need to prioritize. Therefore a technology that has a physical, not human-made, efficiency limit loses priority as a main solution. That doesn’t mean, that H2 should not be looked into (for specific purposes, where it is essential or the reuse of existing infrastructure is the better option), but that we have to prioritize different avenues, with which we can take faster strides towards true carbon neutrality.

            P.S. it doesn’t help, that today’s H2 is almost exclusively derived from natural gas.

    • weeeeum@lemmy.world
      link
      fedilink
      English
      arrow-up
      8
      arrow-down
      14
      ·
      3 days ago

      Or use it to generate hydrogen for simpler, cheaper, more reliable, sustainable hydrogen powered cars.

      We don’t even have enough lithium to replace the average country’s existing cars, let alone all of them, or literally anything else that requires lithium.

      • TropicalDingdong@lemmy.world
        link
        fedilink
        English
        arrow-up
        15
        ·
        3 days ago

        Not sure where our good buddy @Hypx@fedia.io went, but let me assure you. As of right now, 100% of available hydrogen stocks are fossil fuels derived.

        Hydrogen vehicles being green is a fantasy pedaled by fossil fuel companies to not have to move away from natural gas. While it is possible to generate hydrogen through electrolysis, functionally, none actually is. It’s far far cheaper to do so from natural gas, and probably always will be.

        Promoting hydrogen as a “solution” is basically promoting fossil fuels green washing.

        And I’m not sure where you are getting you information on lithium, but it’s probably the best short and medium term option. Beyond that, gravity storage (pump water up hills, and maybe some kind of hydrogen system that doesn’t require transporting the stuff where it can be made and stored in place when solar or wind energy is abundant.

        • Zink@programming.dev
          link
          fedilink
          English
          arrow-up
          1
          ·
          3 days ago

          What that article describes sounds like an awesome development. Too bulky for vehicles at the moment, but possibly excellent for grid storage.

      • cynar@lemmy.world
        link
        fedilink
        English
        arrow-up
        10
        ·
        3 days ago

        Hydrogen is a pain to deal with. It requires excessively thick walled containers to store etc.

        A better solution is to do what plants do. Pin it to a carbon atom. Synthetic hydrocarbons would also be a lot easier to integrate into existing supply chains.

        • booly@sh.itjust.works
          link
          fedilink
          English
          arrow-up
          7
          ·
          3 days ago

          Pin it to a carbon atom.

          Where’s the carbon going to come from? If it’s anywhere but the CO2 in the atmosphere (or at least sequestered on its way to the atmosphere), your energy solution isn’t carbon neutral anymore. And if it is from the atmosphere, then there are efficiency challenges there at concentrating CO2 to be useful for synthetic processes.

          Most syngas today comes from biological and fossil feedstocks, so it’s not really a solution to atmospheric CO2 concentrations.

      • orangeboats@lemmy.world
        link
        fedilink
        English
        arrow-up
        7
        ·
        3 days ago

        There are a lot more ways to store energy other than lithium and hydrogen.

        Pumped storage, vanadium redox battery, sodium battery, … I’d even say they are most suited for grid-level energy storage.

      • booly@sh.itjust.works
        link
        fedilink
        English
        arrow-up
        4
        ·
        3 days ago

        I have doubts that hydrogen will ever work in any industry, but it definitely won’t work for cars. The storage and distribution challenges are never going to make it cost competitive with just regular lithium batteries on a marginal per-joule basis. Even if the energy itself is free, the other stuff will still be more expensive than just charging car batteries off the existing grid.

  • Asafum@feddit.nl
    link
    fedilink
    English
    arrow-up
    49
    arrow-down
    1
    ·
    3 days ago

    This reminds me of a quote (that probably isn’t real) from Westinghouse to Tesla in regard to wireless energy transmission he was trying to create.

    “This is wonderful, but where would we put the meter!?”

  • dubious@lemmy.world
    link
    fedilink
    English
    arrow-up
    30
    ·
    3 days ago

    it’s long past time we took businessman out of control and replaced them with scientists.

    • Argonne@lemmy.world
      link
      fedilink
      English
      arrow-up
      14
      arrow-down
      7
      ·
      edit-2
      3 days ago

      In which case they would choose Nuclear over Solar 9/10 times. I’m onboard

      • Crashumbc@lemmy.world
        link
        fedilink
        English
        arrow-up
        9
        ·
        3 days ago

        They would probably use nuclear for base load, until something better is found. But it won’t “replace” solar.

      • Cryophilia@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        ·
        3 days ago

        I’m on board with whatever the scientists conclude. I’m not a scientist, so if they say nuclear, I’m behind nuclear. If they say solar, I’m behind solar. If they say wind, I’m behind wind. Trust scientists. If you’re trained in science, definitely verify - there’s some bad science out there for sure. But if you have no expertise in the area, just trust the scientific community.

      • Allero@lemmy.today
        link
        fedilink
        English
        arrow-up
        2
        ·
        2 days ago

        This might not be the case anymore, now that solar is dirt cheap.

        But, as another commenter said, I’m onboard with any decision that scientists (including both energy and climate sciences) and engineers come up with working together.

          • justme@lemmy.dbzer0.com
            link
            fedilink
            English
            arrow-up
            2
            arrow-down
            2
            ·
            2 days ago

            The down voters and you should maybe reread my comment and the one I replied to… Sorry to burst your bubble.

            • pancakes@sh.itjust.works
              link
              fedilink
              English
              arrow-up
              3
              arrow-down
              2
              ·
              2 days ago

              I did, it looks like an illogical dislike of nuclear. Not sure if it’s ignorance or just an emotional response but you might want to do some research. A lot of people don’t like things they don’t understand.

  • PotatoesFall@discuss.tchncs.de
    link
    fedilink
    English
    arrow-up
    73
    arrow-down
    7
    ·
    3 days ago

    In this thread: a bunch of armchair energy scientists who think they’ve solved the energy storage problem all on their own.

    • Delphia@lemmy.world
      link
      fedilink
      English
      arrow-up
      39
      arrow-down
      6
      ·
      3 days ago

      Theres tons of ways that people with even a little brains could figure out, the problem is often cost or feasability.

      A big burried water tank in my yard could be heated during the day and used to warm the house via underfloor heating at night, could do the reverse with chilled water in the middle of summer plumbed to an air recirculator with a heat exchanger. Its really simple engineering but expensive to implement.

      I think an awful lot of people just dont understand the sheer scale of a lot of these problems, not the fundamentals.

      • UnderpantsWeevil@lemmy.world
        link
        fedilink
        English
        arrow-up
        22
        arrow-down
        6
        ·
        edit-2
        3 days ago

        an awful lot of people just dont understand the sheer scale of a lot of these problems

        Sheer scale is why we’re in this mess to begin with. Coal power for a population of 50M people living on either side of the Atlantic isn’t what caused climate change. It’s the scale up to provide power for 8B people that’s broiling the planet.

        “Ah, but you don’t understand! There will be engineering obstacles to upgrading the grid!” is shit you can say when you aren’t spending billions to maintain the existing fossil fuel infrastructure that’s currently in place.

        We have the capacity to reorient our economy around a predictable daily regionally glut of solar electricity. We already exploit time variable ecological events to optimize consumption. And we built out a global grid 40 years ago to handle logistics at this scale. You can move electricity from coast to coast and we routinely do. This isn’t an impossible problem, it’s just one that Western financial centers in particular don’t want to invest in solving.

      • Zink@programming.dev
        link
        fedilink
        English
        arrow-up
        2
        ·
        3 days ago

        It’s always economics.

        There’s a joke I’ve heard that says something like anybody can build a bridge that stands, but it takes an engineer to build one that just barely stands (i.e., one where the materials and labor actually cost money).

        That also reminds me of my first router - it was my PC. 10x the cost and 1/10 the features of a purpose built router, but I already had the computer and just needed to provide internet to 1 or 2 more via Ethernet.

        Likewise, it’s easy to design energy storage concepts of all kinds. It’s a lot more tricky if you want it to be economically viable and see mass adoption.

      • arc@lemm.ee
        link
        fedilink
        English
        arrow-up
        2
        ·
        3 days ago

        A lot of energy storage solutions do exactly that - use heat as energy. i.e. solar heads rock, sand, salt etc. and then later on that heat is turned back into useful energy - either pumping water around households to heat them, or to drive a steam turbine. The bigger the volume of rock / sand / salt, the more efficient the process is.

        • Delphia@lemmy.world
          link
          fedilink
          English
          arrow-up
          4
          ·
          3 days ago

          Oh yeah,I’m no expert. I can see salt being problematic if the system sprung leaks and contaminated the soil which wouldnt be uncommon once you have tens of thousands of houses rigged up. Im pretty sure most water based systems just use water and antifreeze.

          Point is that the fundamentals are simple, when theres excess electricity and nobody is home convert it into stored thermal energy that can be used later when people are home, the devils will be in the details.

        • arc@lemm.ee
          link
          fedilink
          English
          arrow-up
          2
          ·
          3 days ago

          Viable solutions with sand or rock have been developed and I expect over the next few decades a large number of such projects will be produced.

    • Mango@lemmy.world
      link
      fedilink
      English
      arrow-up
      2
      arrow-down
      4
      ·
      edit-2
      3 days ago

      Solution: Don’t be fucking greedy. Take what’s you need. Stop taking when you’ve got enough.

      Do you think energy company scientists are gonna tell you what’s real, or will they tell you what their boss pays them to say? I’ll take the armchair scientist. YouTuber scientist preferably.

      • PotatoesFall@discuss.tchncs.de
        link
        fedilink
        English
        arrow-up
        4
        arrow-down
        2
        ·
        3 days ago

        Managing an energy grid is an incredible feat of engineering and the fact that some countries have basically 24/7 constant voltage electricity is nothing short of a miracle.

        And yes I will trust the academics and engineers who have spent ages documenting these processes and building the solutions. I studied this for a while at university. Every professor in that field is an environmentalist and guess what they still taught us about the issues with solar and wind instability and energy storage.

        most armchair ass comment I read all day lmao

        • Mango@lemmy.world
          link
          fedilink
          English
          arrow-up
          2
          arrow-down
          3
          ·
          3 days ago

          Oohhh, you’re one of them. You’re gonna preach to people that they shouldn’t just get batteries eh? Your economy of scale means nothing while your bosses are charging more than that efficiency does for me. It’s cool to engineer big awesome stuff that’s so capable, but not when it’s a leash. I don’t think you’re incapable. I think your industry is greedy and has leverage that nobody should have and pretty much won’t work anymore.

          • PotatoesFall@discuss.tchncs.de
            link
            fedilink
            English
            arrow-up
            3
            ·
            3 days ago

            There’s nothing wrong with getting a battery, especially if you have solar panels. What I’m saying is we can’t cover everybodys needs with them right now, both economically and materially.

            What industry are you talking about?

              • PotatoesFall@discuss.tchncs.de
                link
                fedilink
                English
                arrow-up
                2
                ·
                2 days ago

                the amount of batteries we’d need would require an insane amoint of lithium, plus lithium ion batteries don’t last that long and need to be replaced after a few years of heavy use

                • Mango@lemmy.world
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  arrow-down
                  1
                  ·
                  2 days ago

                  No it wouldn’t. They don’t have to be lithium for houses. Houses don’t move.

  • Phoenicianpirate@lemm.ee
    link
    fedilink
    English
    arrow-up
    39
    arrow-down
    2
    ·
    edit-2
    3 days ago

    Didn’t China have a community use lots of solar and they ended up with such a glut of excess power that they didn’t know what to do with it?

    All communities should have that. Electricity should be free and it would be plausible to make it free. Except for maintenance costs, but that would be peanuts compared to what we pay now.

    • milicent_bystandr@lemm.ee
      link
      fedilink
      English
      arrow-up
      5
      ·
      3 days ago

      Would it really be peanuts? Solar panel manufacture isn’t exactly cheap, nor entirely sustainable (see, for instance, the black market for sand; and economics/politics over lithium mining). Solar panels also degrade; new technology replaces old and has to be paid for and made and installed; the infrastructure tying it all together isn’t free either…

      I feel like solar power, for all its excellence, is not as simple as upgrade as my rts-/tycoon-/sim-gamer’s mind thinks it should be.

      • Phoenicianpirate@lemm.ee
        link
        fedilink
        English
        arrow-up
        5
        ·
        3 days ago

        Upgrading is never simple or straightforward. But it is something we need to do otherwise we won’t have a planet to live on.

        • milicent_bystandr@lemm.ee
          link
          fedilink
          English
          arrow-up
          1
          arrow-down
          1
          ·
          2 days ago

          Agreed, but there’s a real cost involved and a real cost analysis to do. Like with the question of people upgrading to more efficient cars (and scrapping the old) or running the old for longer to minimise car manufacture.

  • zxqwas@lemmy.world
    link
    fedilink
    English
    arrow-up
    49
    arrow-down
    5
    ·
    3 days ago

    This is a real problem for renewables.

    You don’t get paid when the sun shines, and you don’t get paid for when it does not.

    You had to pay for building the solar panels and maintaining them. Corporate greed aside none sane would like their tax money either to be spent on producing electricity when it’s not needed.

    Next step for renewables must be storage that is cheap enough for it to beat having fossil fuel on standby.

    • UnderpantsWeevil@lemmy.world
      link
      fedilink
      English
      arrow-up
      12
      arrow-down
      6
      ·
      edit-2
      3 days ago

      You don’t get paid when the sun shines

      You get paid when people on your grid demand the electricity your plant produces. That’s true whether the electricity comes from the sun or fossilized trees.

      Corporate greed aside none sane would like their tax money either to be spent on producing electricity when it’s not needed.

      A/C usage peaks during the day and wanes at night. Laborers in virtually every field tend to work during daylight hours and sleep at night. We use more electricity when the sun is shining.

      Even before you get into battery power, we have ample opportunity to grow solar inputs into the grid before we get to the point where its being wasted. At peak capacity, we’re using far more electricity than current renewables provide.

      Batteries are a late stage solution to a marginal problem.

    • ShareMySims@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      11
      arrow-down
      6
      ·
      3 days ago

      Corporate greed aside none sane would like their tax money either to be spent on producing electricity when it’s not needed.

      You need to set the corporate greed aside in your own mind, too (not saying you’re greedy, saying you’ve been indoctrinated to only see life in capitalist terms). Stop thinking in “cost” or “profit”, start thinking in “benefit” and “use”. Producing electricity when it isn’t needed is only a problem when someone is looking to make money off of it.

      • Alexstarfire@lemmy.world
        link
        fedilink
        English
        arrow-up
        7
        arrow-down
        3
        ·
        3 days ago

        Producing electricity when it isn’t being used is problematic for the grid. So is producing too little.

        • ShareMySims@sh.itjust.works
          link
          fedilink
          English
          arrow-up
          6
          arrow-down
          2
          ·
          edit-2
          3 days ago

          Producing electricity when it isn’t needed is only a problem when someone is looking to make money off of it.

          I never said it should be. There are plenty of ways to regulate electricity production, storage, and even usage, they just aren’t considered “profitable” so are dismissed, overlooked, and or deliberately smeared and destroyed because they threaten those whose profits they would hurt.

        • Croquette@sh.itjust.works
          link
          fedilink
          English
          arrow-up
          2
          ·
          3 days ago

          Yes, but we already have many solutions ti store energy. Let’s spend the fossil fuel industry subsidies on scaling these storage method instead.

      • Zink@programming.dev
        link
        fedilink
        English
        arrow-up
        2
        ·
        3 days ago

        It’s valid to think in terms of cost IMO even when trying to drive the concept of profit out of the discussion. It’s just a matter of using limited resources in efficient way that leads to more benefit.

        The cost units don’t need to be dollars or euros. It could be in tons of a natural resource or some other thing that’s more tangible than money. But as long as those resources are limited in some way, it would be great to get more MW or MWh for the same resources put in.

        The sick corporate greed part affects which costs get ignored though, like the externalities. They think “sure I’m poisoning our food supply and killing people every day, but nobody takes money out of MY bank account because of it.”

    • AA5B@lemmy.world
      link
      fedilink
      English
      arrow-up
      3
      ·
      3 days ago

      Storage needs both supply and demand. Demand is easy. However storage would be even less likely without an excess of solar supply to feed it

    • 9point6@lemmy.world
      link
      fedilink
      English
      arrow-up
      4
      arrow-down
      2
      ·
      3 days ago

      To be honest, at grid scale, I don’t see why the answer to this today isn’t that the government/energy companies just build a shit load of gravity batteries and use the basically free power times to build grid supply for when the sun’s gone down.

      • zxqwas@lemmy.world
        link
        fedilink
        English
        arrow-up
        9
        arrow-down
        1
        ·
        3 days ago

        Paying billions for mega projects to save millions on cheap electricity makes no sense.

        Napkin math gravity battery Last figures I found are from 2022 the costs storing 1GW 24 hours is $150 per installed kWh

        My apartment has an estimated electricity consumption annually of 2000kWh, I’ll need to store half that for $150 per kWh in a structure that lasts 100 years without maintenance, then crumbles into dust and needs to be rebuilt. It would average out to $1500 per year.

        My current electricity bill is about $600 per year.

        • 9point6@lemmy.world
          link
          fedilink
          English
          arrow-up
          1
          ·
          edit-2
          3 days ago

          I think your calculations are way off based on what I’ve just checked.

          Firstly the average UK house (which is on average a fair bit smaller than American houses, for example), which typically doesn’t use AC and electric heating/cooking uses 2,700kWh (and around 10,000kWh of gas). I imagine that most other countries that don’t typically use gas and have AC, have a significantly higher average.

          Secondly I’m seeing several sources saying <$0.20/kWh is what pumped hydro battery storage costs, which is roughly 2/3 of the price of grid electricity in my country.

          Finally, we spend billions on power plants—why not power storage too? It’s necessary infrastructure spending whichever way you go about it.

          • zxqwas@lemmy.world
            link
            fedilink
            English
            arrow-up
            2
            ·
            3 days ago

            I don’t live in the US either.

            I think the actual value on my bill is 2300kwh. But we can use 2700.

            I can’t find any source for $0.2/kWh. I used https://www.energy.gov/eere/analysis/2022-grid-energy-storage-technology-cost-and-performance-assessment and eyeballed the cheapest gravitational storage. PSH is still above $50. Well let’s assume $0.2 per kWh per year and that half of it can be stored it’s $270 per year in storage fee

            My actual price for electricity is much lower than €600 per year, most of it is taxes and fees that does not get benefit from storage. Looking up the invoice from March i paid $0.07 per kWh, September was $0.01. Half of 2700 would be $95 using March price for the entire year.

            We are spending billions, we must spend billions, but we have to spend them where it makes sense. Spending 270 to save 95 is insanity.

            • 9point6@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              edit-2
              3 days ago

              Wow your electricity prices are insanely cheap to me! I knew it was a bit more expensive here, but not by over 3x or even 30x based on your September estimate! We also have standing charges that amount to something like £250 a year even if you use no electricity whatsoever. My electricity & gas bill is over double yours for two people in a 2 bed house and we basically never use the heating. I think the economy of it makes sense with my situation but it definitely doesn’t for you

              If you don’t mind me asking, where is it you live? Does your country have a lot of oil reserves or something?

              • zxqwas@lemmy.world
                link
                fedilink
                English
                arrow-up
                2
                ·
                3 days ago

                North Scandinavia.

                Most of the electricity here is hydroelectric that has been built many years ago so the power plants are paid off.

                The price during summer is very low. In the winter especially the cold months is much higher with Dec-Feb being the peak.

                The determining factor is still the capex for storing it. At $50 it makes no sense. At $0.2 it makes sense in some places. I don’t know which assumption is correct, I expect to be wrong in 50% of the cases when I argue on the internet.

          • zxqwas@lemmy.world
            link
            fedilink
            English
            arrow-up
            3
            ·
            3 days ago

            No. It’s district heating and not included on the electricity bill. I live north of the Arctic circle and a house from the same year with a heat pump would use an order of magnitude more.

            The example was meant to highlight the absurd costs despite ludicrously favorable assumptions.

        • UnderpantsWeevil@lemmy.world
          link
          fedilink
          English
          arrow-up
          1
          arrow-down
          3
          ·
          3 days ago

          My apartment has an estimated electricity consumption annually of 2000kWh, I’ll need to store half that

          Your electricity usage isn’t equally distributed. You use more power during the day - primarily for cooling your house - than you do at night.

          We also get a glut of wind power in the mornings and evenings, during big swings in temperature. Plenty of opportunity to harness cheap energy at the moment it is available.

          And even after that, battery prices have been falling for years. Current EV batteries are $133/kWh with expectations of $100/kWh by next year and under $80/kWh by 2030.

          That’s before we get into the benefits of High Voltage DC transmissions, which can move large volumes of electricity across regions with minimal loss. Peak production on one coast can offset higher than expected usage on another.

          • booly@sh.itjust.works
            link
            fedilink
            English
            arrow-up
            5
            ·
            3 days ago

            Current EV batteries are

            And just like that you’ve shown that gravity batteries aren’t feasible.

            Storage is going to be a big part of the solution going forward. But it’s going to be chemical batteries and thermal batteries, not gravity batteries.

          • zxqwas@lemmy.world
            link
            fedilink
            English
            arrow-up
            4
            ·
            3 days ago

            Give it a few years and I’ve got my hopes up for batteries.

            The calculations showed the absurdity in gravity storage today, not batteries in the future.

            • UnderpantsWeevil@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              edit-2
              3 days ago

              Gravity just isn’t a good store of energy relative to chemical and nuclear alternatives.

              It’s a simple method for storing energy but not an efficient method. That’s why the human body uses ATP instead of a bunch of pebbles that get lifted to our heads and dropped to our perineum.

              But hey, we’ll always have Dams. And tidal generators are gaining momentum. They’re basically gravity batteries.

      • Maalus@lemmy.world
        link
        fedilink
        English
        arrow-up
        7
        arrow-down
        1
        ·
        3 days ago

        Because “gravity batteries” is a stupid inefficient concept peddled by techbros to solve a huge problem with “a magic solution”. In reality, they require either digging straight down like a mine shaft, but at huge scale, or a high rise building with all the weight concentrated on its top floor when the batteries are “charged”. Wind would sway that shit left and right, the weight concentration would undermine / damage the building if it even was possible to build at scale.

          • Lorgres@lemmy.world
            link
            fedilink
            English
            arrow-up
            4
            ·
            3 days ago

            The problem is really down to finding places where you can actually build something like a hydroelectric power plant.

            You need a large area you can safely flood. (No villages in the area or only villages you can buy out the owners of) or a high up lake.

            The area to flood needs to have the geology required to construct a dam safely.

            And finally, the area needs to be pretty high up and have an area below you can direct the outgoing water to.

          • maniii@lemmy.world
            link
            fedilink
            arrow-up
            2
            arrow-down
            2
            ·
            3 days ago

            so-called “gravity batteries” is pretty much exactly a dam with a mini-dam/reservoir at the bottom. When there is an excess, you run the motor to reverse the waterflow to pump uphill into a highe-elevation water retention pond/mini-dam.

            This also helps reduce the amount of outflow water “lost” due to high-demand. Since you could take almost a day to fill the bottom reservoir and spend “wind”/solar to pump back the “lost” water downstream back into the higher-level reservoir.

            Even if things are inefficient wind/solar are “renewable”, so you can keep “wasting” excess to replenish the dam and still make enough money back ( think in-terms of drought, flooding, windy, sunny, cloudy, etc ) you can basically keep the high-output “system” always topped-up with water. And still supply water + electricity as it is needed. There is no “downside”.

            Not everyone agrees. So opinions can differ.

      • AA5B@lemmy.world
        link
        fedilink
        English
        arrow-up
        3
        ·
        3 days ago

        With the situation in Ukraine, we really should spend on home scale storage for the resiliency against any disaster, even though it’s not as cost efficient

  • 10_0@lemmy.ml
    link
    fedilink
    English
    arrow-up
    28
    ·
    3 days ago

    Build big batteries on the grid get the solar in the middle of the day and release the engery back into it a 17:00 when everyone gets home and puts on the shower and kettle at the same time

  • stoy@lemmy.zip
    link
    fedilink
    English
    arrow-up
    47
    arrow-down
    9
    ·
    3 days ago

    So what they are saying is that our current financial system is too focused on short term gains to cope with short term losses?

    Sigh, when I grew up, I was allways taught to save money so that I have a buffer to fall back on. This concept seems to have completely gone out the window for busniesses lately.

    I dislike the talk about how capitalism is bad as a general concept, but when seeing stuff like this I do agree with it in parts.

    Ok, so let’s solve the issue.

    There is too much electricity, so generating power to transmit to the network will cost us money.

    This has an easy solution, just don’t transmit it to the network.

    Build a battery facility where you store the power instead, infact if the price of electricity is negative, use the power on the grid and charge your batteries as well, I mean, when the electricity cost is negative, you are being paid to consume power.

    Then when the sun goes down, and the electricity price goes up, you sell the charge you have in the batteries.

    Depending on your location you could even set up a pumped storage system, where instead of batteries getting charged, you use the cheap excess energy to pump a resarvoir full of water, and release it when you need the power.

    • WolfLink@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      18
      arrow-down
      1
      ·
      3 days ago

      This is generally the right idea of a solution, but it’s a difficult engineering problem.

      It’s not “just an economics problem” despite the headline.

      The “cost of power becoming negative” is phrased in an economic way but what it really means is the grid has too much power and that power needs to go somewhere or it will damage infrastructure.

      • stoy@lemmy.zip
        link
        fedilink
        English
        arrow-up
        4
        ·
        3 days ago

        I know that, and to incentivice people to use the power, they pay you to do it.

      • Croquette@sh.itjust.works
        link
        fedilink
        English
        arrow-up
        1
        arrow-down
        2
        ·
        3 days ago

        Yes but there are many solutions already to that problem.

        The first one being to shutdown a few stations production when overproducing. The second one being a myriad of storage solutions that already exists and scale them.

        It is an economic problem because we already have many ways to skin the cat, but it won’t produce shareholder value in the short term.

        • chonglibloodsport@lemmy.world
          link
          fedilink
          English
          arrow-up
          3
          ·
          3 days ago

          “Economic problem” isn’t merely short form for “if we had a socialist system we could solve it with free money.” These solutions require us to dig huge amounts of minerals out of the ground and tear the earth apart in the process. And we’re already doing that at a rate exponentially larger than we ever have in history. Plus these are the same materials we need to build the batteries for EVs, so building them for grid storage competes with the EV transition.

          And then you factor in the rapidly increasing electric demand we’re producing by switching over to EVs and that means the demand on the grid is even higher. The grid wasn’t built to be able to source power from everywhere so putting solar panels on everyone’s rooftops is making the situation even worse.

          • Croquette@sh.itjust.works
            link
            fedilink
            English
            arrow-up
            2
            arrow-down
            2
            ·
            3 days ago

            It’s always funny to me that the first argument is always thinking that socialists want free money.

            How many billions are we giving away to big corpos for them to do buy backs and pocket the change?

            Being socialist means reusing the tax money for the benefits of the citizens, not the corpos. Trickle down economics are a sham and never worked

            I agree that it takes resources, but we could finance the extraction of these resources instead of giving subsidies to fossil and fuel industry, or paying for sports stadium for that matter, or giving money to any corpos really.

            And let’s not play coy here and think that the fossil industry isn’t destroying the earth.

            We have the money, and the solutions right now, but the profits are in the way.

            • chonglibloodsport@lemmy.world
              link
              fedilink
              English
              arrow-up
              4
              ·
              3 days ago

              The issue with the green energy transition (renewable energy, grid upgrades, grid scale storage, EVs, and elimination of fossil fuel household heating) is that well over 90% of all the critical minerals we need are mined and/or refined in China. No one wants to move any of this stuff to the US because the environmental damage and refining waste are extremely toxic, far more so than any other resource extraction we do here.

              Furthermore, all the end-point usage of these resources (making solar panels, capacitors, semiconductors, printed circuit boards, and finished electronics assemblies) is all done in China as well. So if we mined and refined all the minerals we’d end up shipping them all to China to be used in manufacturing.

              So now if you want to avoid all that you’re talking about building the entire electronics supply chain inside western countries. But then you face the further issue that there simply aren’t enough electrical engineers in the west to work at these factories. So now you’ve got to retool the entire education system to train a new generation for this critical work.

              At the same time, you’re having to deal with the fact that most Americans don’t want to work in these places. TSMC has been very vocal about their struggles to build these chip foundries in the US and hire Americans at the low wages it actually takes to make this stuff competitive against the obscenely cheap products coming from China. Now consider the fact that TSMC is considered a crème de la crème employer in Taiwan, and the factories in China making capacitors and other bulk commodity components pay far less and have far lower margins, and you can begin to see the issue.

              Americans want the green energy revolution but they don’t want to give up even an inch of quality of life to get it. Neither the rightest of the far right Republicans nor the leftest of the far left Democrats has expressed any desire to volunteer to lower their own standard of living. The whole story thing is a big fight to try to force other people to lower theirs.

              • Croquette@sh.itjust.works
                link
                fedilink
                English
                arrow-up
                1
                ·
                3 days ago

                A lot of the issues you describe are directly linked to money. Yes it takes time and investments, but look at situations like the Covid where pretty much every western countries got caught with their pants down when a vaccine needed to be produced, or PPE were short.

                I understand that it takes time, efforts and money to get to a point where we will have a renewable grid, but there’s always people complaining that it’s not the perfect solution, so we should continue on the status quo.

                The best time to start was decades ago, the second best time to start is now.

                But at this point, this is a political discussion more than a technical one.

                We have the means to do it, but not the will.

                And yes, our quality of life will definitely be affected, but climate change is already doing that, and the grees that is causing that.

    • ormr@lemm.ee
      link
      fedilink
      English
      arrow-up
      17
      ·
      3 days ago

      This is exactly what we’re gonna see on a large scale in a few years.

      • Repple (she/her)@lemmy.world
        link
        fedilink
        English
        arrow-up
        12
        ·
        3 days ago

        I’m very hopeful for flow batteries to improve to a point where they can be very cheaply installed at scale. Seems much better environmentally than lithium ion, and the drawbacks matter less for grid storage.

        • puppy@lemmy.world
          link
          fedilink
          English
          arrow-up
          10
          ·
          3 days ago

          Flow battery drawbacks aren’t drawbacks for home use, let alone grid scale.

            • puppy@lemmy.world
              link
              fedilink
              English
              arrow-up
              7
              ·
              edit-2
              3 days ago

              Too heavy, and too big. This is compared to an automotive battery though. They take up the size of something like a fridge. They are also expensive but prices are bound to come down once production is up. But they have claimed zero capacity degradation for decades they say. And the liquid inside is a fire retardant, so if you puncture a battery that would actually put out the fire.

              There are number of videos on YouTube, it’s an interesting technology.

          • Repple (she/her)@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            ·
            3 days ago

            Absolutely. Home use is what got me interested in them in the first place. I love to DIY stuff (recently I’ve been building planar speakers from scratch) and had the crazy idea of building one for my house.

    • Mac@mander.xyz
      link
      fedilink
      English
      arrow-up
      15
      arrow-down
      1
      ·
      3 days ago

      Why are individuals expected to have an emergency fund yet corporations get money from the government?

    • Cryophilia@lemmy.world
      link
      fedilink
      English
      arrow-up
      10
      ·
      3 days ago

      That’s really not an easy solution at all. It’s simple, conceptually, but it’s a huge series of projects. And expensive.

      • Oneser@lemm.ee
        link
        fedilink
        English
        arrow-up
        3
        arrow-down
        2
        ·
        3 days ago

        Early adopters will profit the most, it’s a non-issue.

    • SlopppyEngineer@lemmy.world
      link
      fedilink
      English
      arrow-up
      7
      arrow-down
      1
      ·
      3 days ago

      This has an easy solution, just don’t transmit it to the network.

      It’s the base load providers that don’t like this. Coal and nuclear don’t like to ramp down. They can’t shut down easily and their installation keeps costing money but stops bringing in money in that period. They’ll go complain to daddy government how unfair it is.

      Until batteries start replacing them by being cheaper.